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Resumo

Os robôs estão-se a tornar numa nova forma de personagens animados, e estão a ser implantados na nossa sociedade

para serem utilizados em diversas aplicações sociais que podem beneficiar do uso de tecnologia e de inteligência

artificial, tal como as áreas de educação, entretenimento, ou de assistência de vida. Esta tese explora como é que

tais robôs sociais, através do seu corpo fisicamente expressivo, e considerando as suas capacidades autónomas,

poderão exibir a ilusão de vida tal como os personagens do cinema, enquanto interagem com humanos. Em

particular, estamos interessados em trazer teorias e práticas da área de animação de personagens, e de desenvolver

métodos e tecnologia que permitam que animadores tomem um papel estrutural no desenvolvimento de robôs sociais

autónomos. Estabelecemos uma nova forma de animação, que designamos de animação de robôs, que pretende

transferir conhecimentos e técnicas de animação tradicional e de CG para a área da robótica social. Estabelecemos

também uma lista de princípios de animação de robots, baseados nos princípios de animação da Disney. O modelo e

metodologia SERA foi criado para dar suporte à criação de robôs autónomos socialmente expressivos, assente numa

metodologia centrada no utilizador, e de forma a incluir peritos não-técnicos tal como psicólogos ou animadores. O

inovador motor de animação Nutty Tracks foi criado para permitir a combinação, durante a interação, de animações

e posturas desenhadas por artistas, com movimento que é gerado em tempo-real. O Nutty Tracks estabelece uma

ponte entre o nível simbólico de um agente inteligente, com a geração de movimento e de controlo de mais baixo

nível, permitindo aos robôs exibir a ilusão da vida de forma que os utilizadores sejam capazes de entender as

suas intenções comunicativas. Para suportar robôs articulados complexos tais como manipuladores industriais,

criámos o ERIK, uma técnica de cinemática expressiva que mistura cinemática inversa (CI) com controlo postural

através de cinemática direta (CD). Criámos ainda o Nutty Motion Filter, que permite interpolar e suavizar um

sinal de movimento em tempo-real, de forma a respeitar as limitações cinemáticas de juntas ou de movimento

espacial, fornecendo parâmetros que permitem ajustar a expressividade do sinal resultante. Diversos casos de uso

são apresentados, que utilizam diferentes robôs. Em particular, desenvolvemos o cenário Ahoy no qual humanos

participam num jogo de mímica com o robô artesanal Adelino. O robô faz uso da sua postura expressiva para dar

pistas aos jogadores, enquanto mantêm o seu olhar na sua direção. De forma semelhante, o cenário AvantSatie

foi criado, no qual o Adelino participa como um companheiro autónomo num jogo de piano. Os estudos com

utilizadores demonstraram que os participantes foram capazes de entender a intenção do robô, mesmo que a solução

em tempo-real do ERIK exibisse uma postura ligeiramente distorcida devido ao sistema resolver simultaneamente

para os objetivos de orientação e postural. No longo prazo, as nossas teorias, métodos e técnicas estabelecem

os alicerces para a criação de robôs autónomos expressivos, capazes de exibir a ilusão de vida através de uma

abordagem com artistas, enquanto os mesmos interagem com humanos e o seu ambiente envolvente.

Palavras-chave: Animação de Robôs, Interação Pessoa-Robô, Robótica Social, Cinemática Expressiva,

Cinemática Inversa
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Abstract

Robots are becoming a new form of animated characters and are being deployed into our society to be used in

various social settings that can benefit of the use of technology and artificial intelligence (AI), such as education,

entertainment or assisted living. This thesis explores how such social robots, through their physically expressive

embodiment, and considering their autonomous capabilities, may be able to convey the illusion of life just as movie

characters do, while interacting with humans. In particular, we are interested in bringing in theories in practices

from the field of character animation, and to develop methods and technology that will allow animation artists to

take a structural role on the development of autonomous social robots. We establish and describe a new form of

animation, called robot animation, which sets to bring the existing knowledge and techniques from traditional and

CGI animation, into the field of social robots. Along it we have outlined a list of principles of robot animation, based

on the original principles of animation from Disney. The SERA model and methodology was created to support the

creation of autonomous socially expressive robots, which relies in user-centred design and includes non-technical

experts such as psychologists and character animators. An innovative animation engine called Nutty Tracks was

created to support the blending, during interactions, of animations and postures pre-designed by artists, with motion

that is procedurally generated in real-time. Nutty Tracks bridges the symbolic level of an autonomous artificial

intelligence agent, with the lower level of motion generation and control. This allows us to create autonomous

social robots that can convey the illusion of life, in a way that users are also able to understand its communicative

intentions. In order to support complex, articulated robots such as industrial manipulators, we have created ERIK,

which is an expressive kinematics technique that acts by bring together inverse kinematics (IK) control with forward

kinematics (FK) control. We add to that the Nutty Motion Filter, which is a signal processor that allows to interpolate

and smooth a motion signal in real-time in order to comply with mechanical and kinematic limits of joints or spatial

motion, while providing parameters that allow to tweak the expressivity of the resulting motion. Various use-cases

are presented using different robots. In particular, the Ahoy interactive scenario was developed in which humans

play a game of pantomime with the custom-built Adelino robot. The robot could use its expressive posture to

convey hints to the players, while keeping an orientation constraint towards their face. Similarly, the AvantSatie

scenario was created in which Adelino acts autonomously as a piano-game companion. User studies showed that

the participants were able to decode the intention of the robot even if the ERIK solution, running in real-time, was

slightly distorting the pre-designed postures in order to solve simultaneously for both orientational and postural

goals. The results provide evidence that expressive postures (controlled using FK) could be used along with IK in

order to provide arbitrary robots with an animation model that works out-of-the-box, with nearly no tweaking. In the

long term, our theories, methods and technique pose as the foundation towards autonomous expressive robots that

exhibit the illusion of life through an artist-enabled approach, while interacting with humans and their surrounding

environment.

Keywords: Robot Animation, Human-Robot-Interaction, Social Robotics, Expressive Kinematics, Inverse

Kinematics
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Chapter 1

Introduction

1.1 Motivation

The art of animation was born more then one hundred years ago in 1896, when Georges Méliès invented the

stop-motion technique. Twelve years later, Èmile Cohl became the father of animated cartoons with ’Fantasmagorie’.

Windsor McCay, however, was coined as the father of animated movies for his 1911 work entitled ’Gertie the

Dinosaur’, in which he created what is considered to be the first animated character to actually convey emotions

and an appealing personality [1]. Animation movies started to drive the attention of the audiences by providing

compelling stories with rich new characters, each tailored to every story and the audience it aimed at.

These hand-drawn animated characters have been evolving since the early days, following the rise of major

studios such as Fleischer Studio (e.g. ’Popeye the Sailor Man’,’Betty Boop’ [2]), Pat Sullivan Studio (e.g. ’Felix the

Cat’ [3]), and of course, Walt Disney Studios (e.g. ’Steamboat Willie’, ’Snow White and The Seven Dwarfs’ [4]).

Some individual animators also had major influence even working between different studios, such as Tex Avery and

his ’Looney Tunes’ characters [5].

Now recently, during the last thirty years, animated characters have become mainly computer-animated. Pixar

Animation Studios, part of the Walt Disney Company, stands for most people as the world’s major animation studio,

competing with other studios like DreamWorks or Blue Sky Studios.

Walt Disney Animation Studios and Pixar’s chief creative officer (formerly John Lasseter, now Jennifer Lee and

Pete Docter) has stood through the last decades in the place where Walt Disney himself once stood - leading teams

of some of the best artists in the world to create critically acclaimed animation films such as ’Toy Story’, ’Monsters,

Inc.’, ’Tangled’, ’Big Hero 6’ or ’Frozen’. Two of Pixar’s most popular films are ’WALL-E’, which features a

highly expressive animated robot as the main character, and ’Big Hero 6’ which features a inflatable healthcare

robot hero. All these characters were artistically crafted using computer graphics (CGI) and design techniques, in

order to convey the illusion that they are alive.

Currently however, robots are becoming a new form of animated characters in order to be used in social

applications backed up by technology and artificial intelligence (AI), in fields such as education, entertainment

or assisted living. Such robots are physically embodied interactive agents, and as such, in the light of this thesis,

rely deeply on the concept of believable agents (or characters) as described by Bates [6]. Bates has provided an
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influential discussion of the creation of such believable agents, which in turn, are based on the notion from the arts

of believable character, as “one that provides the illusion of life, and this permits the audience’s suspension of

disbelief ” [6].

Moving into the scope of this thesis, social robots are defined by Breazeal as a class of robots to which “people

apply a social model to, in order to interact with and to understand” [7]. Bartneck & Forlizzi have also defined a

social robot to be “an autonomous or semi-autonomous robot that interacts and communicates with humans by

following the behavioral norms expected by the people with whom the robot is intended to interact” [8]. In a more

technical interpretation, social robots can be seen as a new form of human-computer interface, that provides the

computer part with a physically expressive, active and perceptive embodiment, through which a sociable artificial

intelligence agent engages in an interactive application with the human user and its surrounding environment.

Considering the social, communicative, autonomous, and believable aspects of social robots, our work is directed

towards how they can culminate as actor-interfaces for the users, through the means of animation theories and

practices applied to robots.

1.2 Research Goals

The ultimate goal of our work is to understand how these social robots, through their physically expressive

embodiment, and considering their autonomous capabilities, may be able to convey the illusion of life just as movie

characters do, while interacting with humans in/and their environment.

The key to this goal is in establishing a new form of animation, called robot animation. In the context of social

robotics, our understanding is that robot animation is more than just making the robot move. It is about making

the robot seem alive while interacting with humans in particular tasks or applications. Van Breemen had initially

defined animation of robots as “the process of computing how the robot should act such that it is believable and

interactive” [9]. It seems relevant however to note that what markedly distinguishes an animated robot from, e.g. a

virtual animated robotic character, is the fact that the robot exists in our physical world. Moreover, we consider the

concept of robot animation to be especially directed towards interactive applications where autonomous robots are

controlled by an AI. In contrast, we still consider animatronics as the ability of making a robot move, following

some predefined trajectory (e.g. for film or live performances), and following on traditional animation principles.

Upon assimilating all the social aspects, we therefore complement Van Breemen’s definition by stating that

robot animation consists of the workflow and processes that give a robot the ability of expressing identity, emotion

and motivated intention during autonomous interaction with human users. The key words, in this definition, that

guide our stance, are expressing and autonomous, i.e. robot animation is closely related to autonomous expression.

The idea behind expressing motivated intention is that an animated robot should be able to portray its motivation

(i.e. story, purpose of existence), throughout its actions, in a way that the human interactors are able to understand

its underlying intentions, and therefore to interpret the robot’s motivation during their interaction.
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1.3 Contributions

With this thesis, we expect to enrich the field of robot animation and in particular, animation of autonomous social

robots, by making the following contributions:

The Principles of Robot Animation that outline how traditional principles of animation can be adopted, adapted

and used with autonomous social robots in order for them to convey the illusion of life;

The ERIK algorithm that allows to animate arbitrary articulated structures using forward kinematics and inverse

kinematics simultaneously, allowing an endpoint to orient towards a target direction while the whole body is

used to convey an expressive posture;

The Nutty Tracks Workflow and Programmable Animation Pipeline that provides non-linear animation capa-

bilities to an expressive robot, by allows it to convey expressivity through a blend of pre-designed animations

and postures, and procedural motion;

The SERA model that establishes tools and a methodology for creating autonomous socially expressive robots

using re-usable components;

Robot Animation uses cases featuring the craft-built Adelino robot, to demonstrate how such contributions may

be used within an autonomous social robot application, which in our cases are directed at entertainment.

Throughout the development of our work, we have authored and co-authored over 30 publications across a wide

variety of conferences and workshops, mostly of high reputation. In particular, we highlight the following ones:

• Ribeiro, T. & Paiva, A. (2012). The Illusion of Robotic Life: Principles and Practices of Animation for Robots.

In ACM/IEEE International Conference on Human-Robot Interaction - HRI ’12, pp. 383–390, Boston, MA,

USA. * Best paper nominee.

• Ribeiro, T., Dooley, D. & Paiva, A. (2013). Nutty Tracks - Symbolic Animation Pipeline for Expressive

Robotics. ACM International Conference on Computer Graphics and Interactive Techniques Posters -

SIGGRAPH ’13, Anaheim, CA, USA. * 3rd place in the Student Research Competition.

• Ribeiro, T. & Paiva, A. (2015). Creating Interactive Robotic Characters. In Proceedings of the ACM/IEEE

International Conference on Human-Robot Interaction - HRI Pioneers Workshop, 215–216, Portland, OR,

USA.

• Ribeiro, T. & Paiva, A. (2017). Animating the Adelino Robot with ERIK. In proceedings of the ACM

International Conference on Multimodal Interaction (ICMI’17), pp. 388–396, Glasgow, UK. ACM.

• Ribeiro, T. & Paiva, A. (2019). Expressive Inverse Kinematics Solving in Real-time for Virtual and Robotic

Interactive Characters. arXiv preprint: cs.RO/1909.13875.

• Ribeiro, T. & Paiva, A. (to appear). The Practice of Animation in Robotics. In Noceti, N., Sciutti, A., Rea,

F. (Eds.), Modelling Human Motion. Springer. ISBN: 9783030467326. * Extended preprint published to

arXiv titled Nutty-based Robot Animation - Principles and Practices.

3



• Sequeira, P., Alves-Oliveira, P., Ribeiro, T., Di Tullio, E., Petisca, S., Melo, F. S., . . . Paiva, A. (2016).

Discovering social interaction strategies for robots from restricted-perception wizard-of-oz studies. In

proceedings of the 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI’16), pp.

197–204, Christchurch, New Zealand. ACM. * Best paper award

• Paiva, A., Leite, I. & Ribeiro, T. (2014). Emotion Modelling for Social Robots. In Calvo, R., D’Mello, S.,

Gratch, J., & Kappas, A. (Eds.), The Oxford Handbook of Affective Computing. Oxford University Press.

ISBN: 9780199942237.

1.4 Outline

This document is organized as follows. In the next chapter we introduce some theoretical background on expression

of emotions in humans, and on character animation. In particular we describe the popular Twelve Principles of

Animation from Disney, which have deeply inspired our work. Chapter 3 presents a review of the related work

that has motivated or contributed to our research and development. In Chapter 4 we present our own theoretical

foundations for creating the Illusion of Life in autonomous social robots, including our Principles of Robot

Animation, the Dimensions of Kinematronics, and the Nutty Workflow. Chapter 5 introduces our general practices

for developing robot animation in HRI scenarios, including the SERA model for building autonomous socially

expressive robots, the Nutty Pipeline and discusses the use of tools for the animation of social robots. Chapter 6

presents the main technological contributions of the thesis, including Nutty Tracks, the Nutty Motion Filter, and

ERIK, our expressive kinematics algorithm that allows any articulated robot to be expressive while interacting with

humans. The next chapter presents various HRI scenarios in which both the SERA architecture, Nutty Tracks and

ERIK were used. This chapter also introduces Adelino, an expressive robot that was built in order to challenge and

test our work. Finally, Chapter 8 wraps up the thesis and provides some future work directions.
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Chapter 2

Background

While this thesis focuses on the animation and expression of robots, our purpose it to provide such robots with

meaningful expressive behaviour during interactions with human beings.

As such interactions are heavily based on both socially and emotionally expressive behaviours, we start by

describing some of the theories of human emotion and expression that can inform the design of robots’ socially

expressive behaviours. These theories also support us in designing emotion. Product design is an example of

a field that has also struggled between creating art/emotion and functional objects [10]. Design tells us how to

communicate, and we want to understand how to enhance the communication of emotions by robots through

animation. Hess [11] states that ’the ability to well communicate emotions is relevant for both the encoder, who

would like to be understood, and the decoder, who strives to understand’.

Because animation is a cornerstone of this thesis, we complement this chapter with an overview of the major

character animation theories and practices that have guided our work since the beginning.

2.1 Human Emotion and Expression

There is no general definition, classification or computational model for human emotions. In this section we

present some of the most popular models, in order to understand how they connect with the expression of emotion.

Considering such models within our work is relevant because social robots are generally backed by an affective

and emotion-enabled artificial intelligent agent. Such socially- and emotionally-intelligent agents (SEIAs) may be

build based on human emotion theories in order to provide more believable and adaptive social interactions with

humans. Thus, when designing non-verbal behaviour mechanisms and expressions for a social robot, it is suitable to

understand how such behaviour is actually linked with the emotional models that typically underlie SEIAs.

FACS by Ekman and Friesen [12] is one of the most referenced models of emotional expression. They argue that

humans can universally recognize six basic emotions through facial expression: anger, disgust, fear, joy, sadness

and surprise. This model is very popular in both character animation and in computation, because it is based on a

small set of discrete emotions. It therefore provides an easy model on which to develop agents and characters, and

is especially aimed at providing a legible visual interface to non-expert human users.

Ortony, Clore and Collins developed the OCC model [13], which defines 22 different emotional categories.
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However, due to the complexity of the model, Bartneck [14] has developed another model that allows to use the OCC

theory in emotional expression in a five-phase process: Classification What do I feel about what just happened?

Quantification How much do I feel about it?

Interaction How does this affect what I was already feeling?

Mapping What should I do to express this feeling?

Expression How should I do that?

Bartneck also suggests that a mapping from OCC to Ekman’s model is possible, but not trivial. Within this model,

the focus of our work mostly addresses the Mapping and Expression phases.

The Pleasure-Arousal-Dominance model (PAD) is another popular model, proposed by Mehrabian [15]. The

PAD model is actually a three dimensional space in which each emotion is defined by its position in Pleasure,

Arousal, and Dominance coordinates. An advantage of this model is that it is adequate for computation, as emotions

can seamlessly transition from one to another through interpolation. However, depending on the emotions, the

transition from A to B might actually go through an emotion C which might both be invalid within the context, or

be unnatural for expression.

Various authors have published extensive and influential works on human non-verbal communication. Because

this thesis will focus more on theories from character animation, and not ones from human models of expression,

we will make only a mention to some of the works that we consider most relevant. Both Ekman and Allwood

have attempted to understand how to generalize the description of human behaviour, which can be informative for

the development of behaviour for interactive characters [16, 17]. Other authors such as Argyle and Wallbott have

explored social and emotional non-verbal communication through bodily motion and posture [18, 19]. Argyle’s

work does however extend beyond human emotional expression, by including non-verbal communication in animals

and other aspects of appearance such as clothing. Although it also includes a description about the use of gestures,

we cannot refrain from mentioning Kendon’s work as a leading authority on the topic of semiotics and gesture

studies [20].

2.2 Character Animation Theory and Practices

We seem to know when to ’tap the heart’. Others have hit the intellect. We can hit them in an emotional way.

Walt Disney

Driving inspiration for the animation of socially intelligent characters from traditional animation has become a

common practice. Bates claims that insights from character animation literature such as ’The Illusion of Life’ [4]

may provide key information for building computational models of believable interactive characters (either virtual

or robotic), by also arguing that “while scientists may have more effectively recreated scientists, it is the artists who

have come closest to understanding and perhaps capturing the essence of humanity” [6].

The same happened upon the emerging of computer animated cartoons. At that time, animators exploring the

new technique also felt the need to look into what had already been done during the last decades, and discover

how that knowledge could be adapted for computer animation. On that topic, Lasseter argued that the traditional

principles of animation have a similar meaning across different animation medium [21].
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Disney’s twelve principles of animation are considered by most, to be the commandments of animation. They

are a result of more than 60 years of Disney productions, and were compiled into a book called ’The Illusion of

Life’, by Thomas and Johnston, the last two of Disney’s Nine Old Men [4] 1.

We have looked into each of these principles of animation, and analyzed what they can mean and how they can

be used on robot animation.

2.2.1 Disney’s Twelve Principles of Animation

We present here a small summary of the original Twelve Principles of Animation defined in ’The Illusion of Life’.

We will further extend and relate them to robot animation4.1.

Squash and Stretch states that characters should not be solid. The movement and liquidness of an object reflects

that the object is alive, because it makes it look more organic. If we make a chair squash and stretch, the chair

will seem alive. One rule of thumb is that despite them changing their form, the objects should keep the same

volume while squashing and stretching.

Anticipation reveals the intentions of the character, so we know and understand better what they are going to do

next.

Staging is the way of directing the viewers attention. It is generally performed by the whole acting process, and

also by camera, lights, sound and effects. This principle is related to making sure that the expressive intention

is clear to the viewer. The essence of this principle is minimalism, keeping the user focused on what is

relevant about the current action and plot.

Follow-Through and Overlapping Action are the way a character, objects or part of them inertially react to the

physical world, thus making the movements seem more naturally and physically correct. An example of

Overlapping action would be hair and clothes that follow the movement of a character. Follow-through action

is for example the inertial reaction of a character that throws a ball. After the throw, both the throwing arm

and the whole body will slightly swing and tumble along the throwing direction.

Straight Ahead Action and Pose-to-Pose is about the animation process. An animator can make a character go

through a sequence of well defined poses (Pose-to-Pose action), or sequentially draw each frame of the

animation without necessarily knowing where it is heading (Straight-Ahead action).

Slow In and Slow Out is how the motions are accelerated (or slowed down). Characters and objects do not start or

stop abruptly. Instead, each movement has an acceleration phase followed by a slowing down phase. Slow

out can be confused with follow-through; however, follow-through extends the action, while the slow-out

finishes it smoothly. A movement should not start or stop suddenly, it should always have some acceleration

within, unless it is clearly intended not to.

Arcs draw the trajectories of natural motions, making them feel less machine-like and more natural and organic.

An example is a head that gazes from left to right. A robotic movement would make the head rotate only

1A group of nine animators that worked closely with Walt Disney since the debut feature Snow White and the Seven Dwarfs (1937) and
onto The Fox and The Hound (1981).
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along its vertical axis. A natural movement will make the head slightly lean up or down towards the midpoint

of the trajectory while rotating.

Secondary Action is an action that does not contribute directly to the expression of an action, but adds personality

and lifelikeness. An example would be breathing, blinking the eyes, or holding and scratching different parts

of the body.

Timing is a dual principle that focuses especially on two different things. First, it can change how users perceive

the emotion of a motion or the physical world in which the character exists. Second, it also relates to the

story, and how the story is being told. It is about how the character pauses between the actions, and how it

synchronizes to itself and the surroundings.

Exaggeration makes relevant features more wild and relevant, and is what makes the characters behave as cartoons,

as opposite to the dull motion of humans in the real world. An example would be popping out the eyes when

startled, or growing a huge red tomato-like head while shouting.

Solid Drawing is about correctly balancing volume and weight of characters and objects. It also warns against

symmetric characters and expressions. Characters do not stand stiff and still, unless that is what they are

intended to portray.

Appeal of a character is how it expresses and asserts its role, personality and relevance in a story. It is possibly the

most subjective principle, as it also relates to how the character can make the viewers believe in its story.

2.2.2 Inspiration from TV Cartoons - Warner Bros., and MGM and FOX

Since The Golden Age of American Animation, Warner Bros. and MGM animators definitely marked their position

as masters of animated cartoons. Although Exaggeration, for example, is already described in the Disney’s list,

these animators took it to another level, by given special focus on physical exaggeration, in which we can actually

identify common subtypes of exaggeration, like extreme distortion or blowing-ups. Most of their animations were

largely based on comic plots, which generally included sever physical damage to the characters, thus justifying why

they developed so much into blowing-ups and heavy distortion of the characters’ body.

While we do not want to blow up or physically damage robots while animating them, some of these practices

can still provide interesting tips on some specific domains, like robots aimed at entertainment. While entertaining,

we want a character to be as much expressive as possible, so entertainment robots will more likely promote the

interest for developing and incorporating behaviors and mechanisms inspired by this kind of animation.

Tex Avery, one of the greatest animators of all time, coined the ’Tex Avery Expression’, or just a ’Tex Avery’,

which is a very know eyes-popping-out expression generally used in fear or surprise situations [5]. The EMYS

robotic head is an example of how an eyes-popping mechanism can be incorporated into a robot (Figure ) [22].

Another common trait is that each character was made very unique and well adapted to its role (principle of

Appeal). Some of the most popular characters created during this time were Bugs Bunny, Daffy Duck, Porky Pig,

Elmer Fudd, Yosemite Sam, Tom and Jerry, Scooby Doo and Droopy [23]. They usually carry or use regular props

that people end up associating with that character, independently of the plot. Most of them also feature unique

catchphrases and often perform secondary action that helps to define the personality of the character they convey.
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All these features together contribute to the illusion of the character as a being, and to the reinforcement of the

connection between viewers and the characters.

Chuck Jones was one of the major animators from Warner Brothers (and later MGM), and has described

animation at Warner Brother as “Believability. That is what we were striving for ... belief in the life of the characters.

That, after all, is the dictionary definition and meaning of the word ‘animation’: to invoke life” [24]. This definition

was also cited by Bates on his seminal paper on believable agents [6].

Unfortunately, the practice of these animators is not so well documented as the ones from Disney. As they were

generally jumping around from one studio to another, each animator may have followed different guidelines along

his career, so there are no compiled guidelines to describe their creative process. However, by viewing their work it

is clear that some common traits were followed, just like in the case of extreme exaggeration or the development of

characters that we described.

2.2.3 Puppet Animation

If we are looking at different kinds of animators to draw inspiration from, we must take a look at a genre that

actually shares some practical obstacles with robot animation. Puppets are physical characters that are built in order

to move and be expressive, and are subject to the laws of physics of our real world. If we replace the word ’Puppets’

with ’Social Robots’ in this last sentence, it would still be valid.

Puppet animation grew especially popular with Jim Henson’s ’The Muppet Show’ [25]. Henson’s puppets

(Figure 2.1) are generally very simple in movement. Most of them can only open and close their mouth, and wave

their arms and body. But by developing their own non-verbal language, animators were able to portray all kinds of

different plots with them. By watching episodes of the series we can find that whenever a muppet wants to close its

eyes, it will cover them with their hands, as the eyes cannot gaze or shut. This kind of tricks is very inspiring for

robot animation.

It is empirically clear that if a character has only a mouth that can open and close, it is impossible to portray

emotion by using just its face. That is where animation takes place. Most of the emotional expressions we find in

puppets comes from the movement, and not just the poses.

There is no defined happy pose for a muppet. Instead, there is a bouncy movement with the arms waving around,

that elicits the feeling of excitement and happiness. For fear, the mouth will tremble a lot, and the muppet will

probably cover its eyes and assume a posture of withdrawal. An angry expression is achieved by leaning the muppet

against the object or character of hate, closing its mouth, and pulling back its arms.

Another interesting feature in puppets is that if correctly designed, they can benefit of the ’Noh mask’ effect

[26]. These are traditional japanese masks used in Noh drama [27].

Although the mask does not change in shape, it is designed to convey a different emotion depending on the

angle at which it is viewed. When the carrier titls the head downwards, the mask is viewed as a happy face, while

tilting it upwards conveys a sad, or angry expression (depending on the design and purpose of the mask).

As in most inspiration from art, the best way to learn their principles and practices of puppet animation is by

watching the episodes and using them as reference footage.

9



Figure 2.1: The Muppet Show’s Kermit the Frog.

Figure 2.2: The Noh mask effect [26].

2.2.4 Animation Curves

Animation Curves are tools that are particularly important for animators. An animation curve exists for each degree

of freedom (DoF) that is being animated in a character, and it shows how that specific DoF varies over time [28].

Figure 2.3 shows the animation curve for the translation DoF of a hypothetical drag race car. In a drag race, the

race car only drives forward at full speed. Because this animation curve shows the position changing over time, the

speed of the car at some point of the curve is actually the tangent to the curve on that point (the first derivative). The

second derivative (the rate of change of the tangent) thus represents the acceleration of the car.

Figure 2.3: The animation curve of the translation of a drag car accelerating until it reaches a top speed, and then
decelerating until it halts.

By analyzing the curve, we see that the car starts by accelerating until about halfway through, when it reaches
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its maximum speed. We notice this because during the first part of the curve there is an accentuated concavity. Once

the curve starts looking straight, the velocity is being kept nearly constant. In the end the car decelerates until it

halts.

Animation curves can also be used to represent Rotation or even Scaling. Figure 2.4 shows the animation curve

of the rotation of the pivot of a pendulum that is dropped from a height of 20 degrees. It then balances several times

until it stops.

Figure 2.4: The animation curve of the rotation of a pendulum that is dropped from 20 degrees and balances until it
stops.

In this curve we see some grey squares where the curve changes. These squares are actually keyframes that

were used to design the animation. The curve is a spline interpolation of the movement between these keyframes.

By looking at each keyframe, we see that that the angle goes from 20 degrees to -15, then to 11 and so on. Just

like in the translation animation curve, the tangent of this curve also represents the velocity of rotation.

If we imagine the pendulum going through the lower-most position of its trajectory (which is the position in

which it travels faster), that point would correspond to the 0 degrees line, thus making sense that the curve in this

point is steeper than in the rest of the trajectory. As the pendulum loses energy and balances less, the steepness is

also lower, which also reflects in a lower speed.

Animation curves thus stand as a very important tool for analyzing and adjusting animations. They can also be

computationally processed just like a signal, in order to warp the animation and create animation effects.

During the last decade, robotic platforms have been evolving in a way that we now have full robotic characters

with a large number of degrees of freedom, which brings their expressiveness closer to what we may find in animated

cartoons. Besides inspiring the design of robots, animation has also already inspired the design of robot animation

[29, 30, 9, 31, 32, 22].
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Chapter 3

Related Work

3.1 Interactive Embodied Characters

One of the major fields that grounds this thesis, and has performed many developments of interest for the creation

of autonomous socially expressive robots, is the field of Intelligent Virtual Agents (IVAs). This field, however, is

also commonly associated with other sub-fields or adjacent fields such as Socially Intelligent Agents or Embodied

Conversational Agents (ECAs). All of them are generally associated with virtual agents.

Both Bates and Reilly have extensively described the concept of believable agents (or characters) [6, 33].

Reilly in particular, argues that “the problem of creating believable agents lies somewhere between the arts and

artificial intelligence” [33]. He further adds that “Artists know how to create believable characters”, and that

“AI researchers know how to create autonomous agents”, thus “joining these two disciplines allows to produce

autonomous, interactive agents that have the abilities that have made the non-interactive characters of traditional

media believable”. On the term believable, he mentions that it is a term taken from the arts to describe characters

that "work". He also adds three lessons from the arts about the fundamental nature of believability:

1. Believable agents may not be intelligent. AI systems designed for rationality and intelligence would be

inappropriate for building believable agents.

2. Believable agents may not be realistic. It is better to go with less realistic characters which meet the audience’s

expectations than to go with more realistic characters which don’t.

3. Believable agents will have strong personalities. These personalities should affect everything about the agent,

including how the agent moves, thinks, and talks. Also, idiosyncratic quirks are extremely important parts of

the agent’s personality.

Regarding the type of agents we are interested in developing, we have taken the designation of believable

interactive characters by Bates [6], and also stepped back from the idea of virtual agents, in order to make

the concept’s relation with the arts more explicit by calling them Characters instead of Agents. Because robotic

characters represent the apex of animated characters, we also reinforce the idea of them being Embodied. Throughout

our work, we therefore drop the designation of such entities as Agents, and adopt the use of the term Characters in

general. As such, we define Interactive Embodied Characters as any type of artificial embodied agent, virtual
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or robotic, that performs believable, interactive behaviour with humans in given tasks, regardless of human or

anthropomorphic form, and of communication being verbal or non-verbal.

3.1.1 Architectures

The creation of interactive virtual characters has been explored for quite a time now. Some authors have established

foundations on this topic. Here we especially cite the works by Bates, Reilly, Badler and Perlin & Goldberg’s.

Bates has undoubtedly established the foundation of interactive virtual characters through his concept of

believable agents. Along with Loyall and Reilly he described the Tok architecture, which addresses the capabilities

of perception, reactivity, goal-directed behaviour, emotion, social behaviour, natural language analysis and natural

language generation [34]. As such it presents as one of the earliest architectures for socially interactive virtual

agents.

The Perlin & Goldberg presented Improv, a system that allows to create virtual actors that respond to users

and to each other in real-time, focusing on the need of the authors that build such virtual actors [35]. The system

is composed of an animation engine and a behaviour engine. The behaviour engine provides mechanisms to run

scripts and rules that control the actors. The animation engine provides animation layers that allow to create and

blend continuous motion using procedural techniques. Both works have built an architecture that connects a flexible

animation system with some form of AI agent. The latter especially considers the fact that such a system will be

mostly useful if it considers not only the run-time environment, but also the authoring process, by providing ways

of establishing how the "mind" of the character connects and communicated with the "body". The performing

character is actually part of a more complex artificial intelligence (AI) agent. While a fixed-storytelling character

may be fully controlled by an animation that is pre-designed to follow and match such story specifically, interactive

characters need animation systems that can adapt and change in response to the users’ and environment’s events in

interaction-time.

Badler has presented Jack, another one of the earliest interactive virtual human (VH) systems [36]. The author

strived to achieve a system that was able to create a VH that could exhibit both pre-design and procedural animation

that was controlled in real-time by an AI agent that responded to a user via a language based interface.

Many interactive character systems have since then been following a three layer intention-behaviour-realization

framework, which was formerly proposed by Kopp and colleagues as the SAIBA framework [37], illustrated in

Figure 3.1. This framework was created especially for virtual humanoid characters. It splits the whole agent

architecture into a first layer capable of performing some decision-making on the Intention of the agent, which is

then made into a Behaviour plan by the middle layer, and finally, performed and rendered as the virtual character

through the Realization layer.

Figure 3.1: The SAIBA framework as described in [37]

The SAIBA framework has also been used with robots (e.g. [38, 39, 40, 41]), and was later extended to also

consider interactive applications and environment-awareness by myself and colleagues, calling it the Socially
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Expressive Robotics Architecture (SERA) [42]. SERA is described further in Chapter 5.1.

Schröeder developed the SEMAINE API, which was used in the EU FP7 Semaine Project1. This is a component

integration framework, based on the principles of asynchronous messaging middleware. Its architecture, however,

has a pipeline message flow, meaning that it follows in the traditional sense-think-act loop of interactive agents.

The author points out two key requirements for a framework of this kind: Infrastructure, meaning that components

must be able to run on different programming languages and operating systems; and Communication, meaning that

components must follow suitable representation formats, which should be standards where possible[43].

CMION was developed in the context of the EU FP7 LIREC2. It is a mind-body framework for integrating

sensors and actuators through various degrees of abstraction. It was designed especially for allowing agent migration

(transferring the agent’s identify to a different embodiment). As such, it abstractly encapsulates functionalities of

an embodiment into what they call competencies. These competencies share information through a blackboard

component. By defining an embodiment as a set of competencies, agents can then migrate to other embodiments, as

long as those implement the same type of competencies[44].

ROS - Robot Operating System is a popular middleware for robotics that provides a common communication

layer to enable different types of sensors, motors and other components to exchange data [45, 46]. ROS is module-

based, meaning that a ROS-based robot actually runs several different modules, being each one of them responsible

for controlling one or more components of the robot. They communicate based on a message oriented middle-ware

(MOM). This is accomplished through a publish-subscribe pattern, in which each module specifies the type of

messages it wants to receive (subscription), so that each time another module produces that message (publication),

the subscribed modules receive it.

3.1.2 Behaviour

Several authors have proposed different languages and schemes that allow to model and represent non-verbal

behaviour in SIAs such as BEAT [47], CML[48], MPML [49] or APML [50]. The performance of such behaviour

tends however to be based solely on the selection or blending of pre-designed animations specific to the used

embodiment.

Badler [51] has presented an Expressive MOTion Engine (EMOTE) that implements LMA [52] using high-level

parameters for human animation control; however, this solution is designed for anthropomorphic characters.

Schröder et al. have proposed EARL, a general mark-up language that is not dependent of any emotion model

or theory, thus marking a possible step for an abstract and broad specification of emotive behaviour [53]. However,

their language provides only a structure to gather the description of an emotional expression, with no means on how

to accomplish it.

Within the SAIBA framework [37], presented in the previous subsection, we also find the Behavior Markup

Lalguage (BML), a markup language used to represent synchronized multi-modal behaviour, that can be somewhat

seen as a successor to MURML [54] The purpose of this language is to provide a specification of basic expressive

channels and modalities that different authors can use in order to specify behaviour in a generic way. The modalities

currently defined in the BML 1.0 Standard are: Face, Gaze, Gesture, Head, Locomotion, Posture and Speech. More

1http://www.semaine-project.eu/ (accessed January 12, 2019)
2http://lirec.eu/ (accessed January 12, 2019)
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detail about the BML actions can be found in [55].

EMBR is a realtime animation engine for interactive embodied agents, designed to work with BML [56].

It proposes that between a high-level behaviour description layer such as one provided by BML, and SAIBA’s

realizer/rendering layer (e.g. a 3D engine) one must include an animation layer that can be scripted. For that purpose

they propose the EMBRScript which can be used to realize particular BML actions such as gazing at another

character with a given emotional expression, therefore allowing such action realization to become more procedural.

However, because it is designed as a layer to be fit into the BML architecture, it remains heavily directed at the

animation of virtual human characters.

3.1.3 Animation and Control

Tomlinson has provided a description about how animating characters for interactive applications is different then

animation characters for film and video [57]. He therefore distinguishes two types of animation: Linear Animation

for film and video, and Interactive Animation otherwise.

Smartbody is a procedural animation system developed especially for virtual humans [58]. It takes a BML

specification of behavior as input in order to be controlled by any type of AI agent. This behavior is scheduled and

executed in several motion controllers, which are combined in each frame to generate a set of skeletal joint rotations

and translations. Smartbody can procedurally generate and adapt gestures using an example-based motion synthesis

approach. The system is heavily based on [59], an example-based motion synthesis technique for locomotion, reach

and object manipulation. This technique takes a takes a large set of example postures of a given embodiment e.g.

reaching towards different directions, and is then able to produce a grasping pose for ano direction by blending the

previously authored examples.

Levine and colleagues have recently developed a technique to animate characteres based on motion learning

[60]. Artists first train the system by creating example motions that are associated with task specification. This

trained probabilistic model can later be used to generate new motions that accomplish new tasks.

Moussa et al. have embarked on one approach for this, using MPEG-4 Facial Animation Parameters (FAP) [61]

applied to a humanoid robotic face [62]. However, FAPs are designed for human faces and thus comprehend an

extensive number of expressive features for the human face.

On the other hand, movement can also be dissociated of the actual body, and instead related to its meaning,

as used in acting and other performance arts such as the Delsarte system [63] and the Laban Movement Analysis

[64, 65].

3.2 Inverse Kinematics

In general, the computation for the animation of a hierarchical, articulated structure (kinematic chain) is done

through Forward Kinematics (FK) and Inverse Kinematics (IK). This section briefly introduces some fundamental

concepts and techniques regarding these processes. IK is a very extensive field and we will therefore focus on the

aspects of it that are most related with our work.

We start by introducing the lexicon and fundamental concepts used in this paper, regarding both FK and IK.

Figure 3.2 provides visual guidance on each of the elements that compose a kinematic chain, throughout the
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following description:

• given an articulated structure of N joints (Ji) that connect N segments,

• being the first joints called Root and the tip of the last segment called EndEffector,

• having Pi as the world-space position coordinates of each joint Li,

• having the P1 (or PRoot) located at the origin (O) of the world-space,

• with each joint allowing for a rotationα about an arbitrary axisRi with angular limits such thatminαi ≤ α ≤ maxαi,

• being a Kinematic Solution (KS) given by the configuration of angles α1, ..., αN that are applied to each

rotation axis R1, ..., RN , of each joint L1, ..., LN ,

• being a Posture represented by the configuration of world-space positions P1, ..., PN of each joint L1, ..., LN ,

Forward Kinematics allows to compute the final Posture achieved from a given Kinematic Solution, while Inverse

Kinematics allows to compute the Kinematic Solution that allows to achieve a given Posture. In reality, IK is

generally used to compute the KS that allows solely the end-effector S to achieve a given target T . The transform

of an end-effector S = SposSori that moves in 3D space may contain up to six DoFs: three for a position in

world-space, and three for an orientation in world-space. Therefore most IK techniques created to date allow to

calculate the KS that allows the chain’s end-effector to achieve either a given position Spos, or a given orientation

Sori, or both.

The IK problem is generally addressed either through an analytical solution, or through a numerical solution.

The main difference between both is that an analytical solution is a closed-form expression that takes as input the

desired posture, and outputs the (set of) kinematic solutions for it, solving the IK problem for a particular kinematic

chain. This means that if any change is made to any joint configuration regarding its rotation axis, angular limit, or

even a segment’s length, then the solution-expression needs to be re-calculated. On the other hand, a numerical

solution can be more generalizable, but is generally implemented as a non-linear programming problem in which

typically the algorithm iterates towards an approximate solution (modelled as an optimization problem). Analytical

solution-expressions are therefore faster for computing, than numerical techniques, but take a lot of effort to build

and are embodiment-specific [66]. They are especially appropriate for specific, well-defined limbs such as the

human arm subsystem. Numerical solutions can provide flexibility to better adapt to different types of kinematic

chains. In our work we try to address the IK problem in a general way, so that it can be used with any embodiment

Figure 3.2: An articulated structure (kinematic chain) as used in both Forward Kinematics (FK) and Inverse
Kinematics (IK). Also shown is a given target T that is to be reached by the end-effector S.
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Figure 3.3: The Jacobian solution as a linear approximation of the actual motion of the kinematic chain. Description
and image cited verbatim from [67].

and with any morphology, with minimum (or in absence of) parameter customization. Therefore we follow with a

brief description of some of the most popular numerical techniques.

A comprehensive summary of the most popular IK techniques has already been gathered by Aristidou et al.

[67] and is recommended to the interested reader. Given that the latter one is recent and already describes nearly

every option of inverse kinematics up to date, we will refrain from extending this literature section beyond the bare

minimum. As such we describe here only the techniques that are central to our contribution, while solely providing

a mention to various other relevant techniques such as [68, 69, 70, 71].

3.2.1 Jacobian Inverse Methods for IK

While in general, the IK problem is highly non-linear, the Jacobian methods provide linear approximations to it.

They are based on the computation and inversion of the Jacobian matrix which contains the partial derivatives of the

entire chain system, relative to the end-effectors.

An extensive explanation of these methods is provided by Buss [72] and should be consulted for more details.

The problem is illustrated by Figure 3.3. In simple terms, given the current position and/or orientation ~s (i.e.

transform) of an end-effector, and a target position and/or orientation ~t that it should achieve, let ~e = ~t − ~s

represent the error vector (or task) between the end-effector and the desired target values, and θ = (θ1, ..., θn)T , the

current joint angles of the system, having n as the number of joints. The value m will be the dimension of ~e (and

consequently, of both ~s and ~t) and will depend on the target IK task. If the task is e.g. the 3D position constraint

or 3D orientation constraint of a single end-effector then m = 3. If it is to control both the 3D position and 3D

orientation, then m = 6. However one might choose a task that controls the orientation of only two of the rotation

axes, in which case m = 2. Alternatively, one might also require to set one end-point to a given XY position,

regardless of its position in the Z axis; in that case m would also be 2.

Note that for position control, the task is directly calculated as ~e = ~t− ~s, while for orientation control many

parametrizations exist. When using Euler angles, one option is to calculate it the same way, i.e., solving at the

differential level, by using the desired angular velocity vector. When using quaternions, we may take the vector part

of the target quaternion orientation q~v , and use this vector as the task.
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ψi,j =
Joint j is

Prismatic Revolute

Task i is
Translation ~rotiz ~rotiz × ( ~posi − ~posi−1)

Rotation or Posture 0 ~rotiz

Table 3.1: Calculation of the Jacobian terms ψi,j .

The Jacobian matrix J of size m× n (rows× columns) is a function of the current θ values defined by

J(θ) =

(
∂si
∂θj

)
i,j

(3.1)

It will result in a matrix such as

J =


ψ1,1 ψ1,2 . . . ψ1,n

ψ2,1 ψ2,2 . . . ψ2,n

...
...

. . .
...

ψm,1 ψm,2 . . . ψm,n


where each column represents the influence of joint j over each task i. A simple rule for calculating each element

ψi,j is presented in Table 3.1.

Let Ti be the transform matrix for the frame of joint i:

Ti =



~rotix ~rotiy ~rotiz ~posi
rx1

rx2

rx3



ry1

ry2

ry3



rz1

rz2

rz1



x

y

z


0 0 0 1



The term ~pos0,i is the translation between the root frame and joint i’s frame, while ~rot0,iz is the z-vector of the

rotation between the root frame and joint i’s frame. Assuming that the root frame is located at [0, 0, 0] and that its

rotation is equal to I3 (i.e., Troot = I4), we can take the values of both ~rot0,iz and ~pos0,i
i directly from matrix Ti. If

that is not the case, then either Ti must be transformed by T−1
root , or both vectors ~rot and ~pos must be transformed by

that inverse.

Please refer to [72] or [73] for more information on how to calculate the Jacobian matrix, or alternatively to [74]

for a fully detailed description. This matrix allows to approximate the change in the end-effector’s transform given
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an increment in the system’s joint angles of ∆θ:

∆~s ≈ J∆θ (3.2)

The problem will be solved by seeking a value for ∆θ such that ∆~s becomes approximately equal to ~e, by making:

~e = J∆θ (3.3)

This equals the question how much must I increment each joint angle θ in order for the end-effector to move by the

amount ~e?

A solution to the IK problem is therefore given by equation (3.2) for ∆θ, using the inverse of the Jacobian:

∆θ = J−1~e

The implementation of any variation of the Jacobian methods typically follow a similar approach, which is as an

optimization problem that minimizes the residual error etotal = ‖~e‖.

In most cases however, this equation cannot be solved uniquely, as Jacobian J may be non-square, non-invertible,

or nearly singular (which would provide poor and unstable results). Several alternatives have been found to calculate

the Jacobian’s inverse. One of them is to use the Jacobian’s transpose JT instead of its inverse, and multiplying it

by an appropriate scalar α (Equation 3.4).

∆θ = αJT~e (3.4)

Another possibility is to use its pseudoinverse J† (also called the Moore-Penrose inverse of J) as shown in Equation

3.5.

∆θ = J†~e (3.5)

Using the pseudoinverse method also allows to perform a projection into the nullspace of the Jacobian, meaning

that we may further optimize the solution towards a secondary task as shown in Equation 3.6. An example of that

would be to use the end-effector’s orientation as the main task ~e, for which the solved ∆θ would minimize the error

J∆θ − ~e, while choosing a ~z vector of the same dimension as θ, that would attempt to keep the resulting angles as

close as possible to zero (secondary task), without disrupting the main task.

PN(J) = I − J†J

∆θ = J†~e+ PN(J)~z
(3.6)

The ~z vector can be calculated by minimizing a criterion h(θ), using ~z = ξ∇h(θ), where ξ is a gain factor.

Baerlocher shows an example of the typical application of keeping the joint angles as close as possible to some

desired values (e.g. to zero) [73], by using h(θ, θdesired) = ‖θ − θdesired‖2. The example of keeping the joint

angles close to zero would therefore be to have just h(θ) = ‖θ‖2. Alternatively, if the secondary task e2 is clearly

represented as a Jacobian matrix J2, then we might also use Equation 3.7, as explained by [73].

z = (J2PN(J1))
†(~e2 − J2J

†
1~e) (3.7)
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Both the transpose and the pseudoinverse methods however, suffer from either approximation errors, or from

instability near singularities. Such methods also suffer from poor results when the target is too distant from the

current position or orientations. One method to mitigate that problem is also presented by Buss [72], and consists in

clamping the ~e vector so that its norm is never greater than a constant value Dmax, as shown in Equation 3.8.

~e = ClampMag(~t− ~s,Dmax) (3.8)

ClampMag(w, d) =

 w if ‖w‖ ≤ d

d w
‖w‖ otherwise

The damped least squares method (DLS), also called the Levenberg-Marquardt method further attempts to

address these issues, by including a non-zero damping constant. This constant however, must be chosen carefully

depending on the kinematic configuration of the system and on its purpose, in order to remain numerically stable

near singularities, without keeping the convergence rate too slow. Equation 3.9 shows how to calculate ∆θ using

the DLS method, where λ is the damping constant, which must be carefully selected based on the details of the

multibody and expected target positions, in order to ensure stability. A larger damping value allows the solutions to

become more stable near singularities, however if the constant is too large then the convergence rate will be lower

(as it will require more iterations).

J†
λ

= JT (JJT + λ2I)−1

∆θ = J†
λ

~e
(3.9)

Alternatively, the DLS method may also be implemented through the Singular Value Decomposition method

(SVD), which decomposes a matrix J of m×n into three matrices U (m×m), D (m×n) and V (n×n), such that

J = UDV T . D is the singular value matrix of J , with its only non-zero values being along its diagonal di,i = σi,

being σi the ith singular value of J . Also, because σi may be zero, let r be the largest value such that σr 6= 0, with

σ being sorted such that σi ≥ σi+1. Based on the SVD of J and following the elaboration by [72], the DLS method

can also be expressed as in Equation 3.10:

J†
λ

= (

r∑
i=1

σi
σ2
i + λ2

)viuTi

∆θ = J†
λ

~e

(3.10)

As mentioned before, the major issue with the DLS technique is the selection of an appropriate damping factor.

Buss and Kim [75] address this issues with the Selectively Damped Least Squares (SDLS) method that adjusts

the damping factor for each singular vector of the Jacobian’s singular value decomposition (SVD). This method

converges faster than DLS and does not require ad hoc damping constants. First a global γmax is chosen, for which

they recommend a typical value to be π/4 (45 degrees). This will be the maximum permissible change in any joint

angle in a single iteration. Then we take the SVD of J = UDV T and express the desired change in end-effector

position as ~e =
∑
i αiui where ui is the ith column of U and αi = 〈~e, ui〉 = uTi ~e. Let also ρ`,j = ‖∂s`/∂θj‖ be

the relative magnitude of the change of the ` th task variable in response to a small change in the jth joint angle
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(from Equation 3.1). We further define the auxiliary N and M vectors along with the selective damping factor γ:

Ni =

m∑
j=1

‖uj,i‖,∀i ∈ [1, n]

M ′i,` = σ−1
i

n∑
j=1

|vj,i|ρ`,j ,∀i ∈ [1,m],∀` ∈ [1,m]

Mi = σm`=1Mi, `,∀i ∈ [1, n]

γi = min(1,
Ni
Mi

) · γmax

(3.11)

Finally, the SDLS solution is expressed as ∆θ:

ϕi = ClampMaxAbs(σ−1
i αivi, γi)

∆θ = ClampMaxAbs(

r∑
i=1

ϕi, γmax)
(3.12)

Baerlocher introduced techniques that allow to solve the IK problem for multiple tasks with priorities, i.e., by

specifying the priority in which each task should be achieved [73]. In particular he aimed at solving the problem of

postural control for virtual humans, by allowing to specify e.g. a task for one hand to reach a certain goal position,

plus another task for the head to face a certain direction, while keeping the whole body balanced. His technique is

actually a rewritten version of the solution initially proposed by Maciejewski [76], upon also being modified to

account for algorithmic singularities. We found his approach to be the most significant one to compare to given

our goals. Equation 3.13 presents Baerlocher’s formulation of the DLS applied to two tasks ~e1 and ~e2, whose

corresponding Jacobian matrices are Ji and damping constants λi, i ∈ [1, 2], with the first task having a higher

priority than the second.

∆θ = J†
λ1

1 ~e1 + (J2PN(J1))
†λ2

(~e2 − J2J
†λ1

1 ~e1) (3.13)

He finally elaborates towards a formulation that supports more than two levels of priority, by following the same

approach. In that case, given a set of tasks [~e1, ~e2, ..., ~ep], for which Ji and λi, i ∈ [1, p] are the corresponding

Jacobian and damping constants, with i = 1 corresponding to the highest priority, and i = p to the lowest, Equation

3.14 presents the general formulation for the multiple-task-priority method:

∆θi = ∆θi−1 + (JiPN(JAi−1))
†λi (~ei − Ji∆θi−1)

∆θ1 = J†
λ1

1 ~e1

JAi =


J1

J2

...

Ji


(3.14)

The major difference between his problem statement and ours is that his problem is especially directed at virtual

humans (VH) with many DoFs while ours is directed at robots with much fewer DoFs than the VH, therefore his
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Algorithm 1: Pseudocode for a typical Jacobian method’s iterative solver.

input :θ,~t; // initial joint angles,

// target task variables (position and/or orientation)

1 θ′ ← (θ1, ..., θN )T

2 θ̇ ← ~0

3 bestθ̇ ← θ̇
4 besterror ← MAX_FLOAT
5 ~s← ForwardKinematics(θ′); // calculate EE position and/or orientation from θ′

6 for N ← 1 to MAX_ITERATIONS do
7 ~e← ClampMag(~t− ~s,Dmax); // where ~t is the target position and/or orientation

8 if ‖~e‖ ≤ besterror then
9 besterror ← ‖~e‖

10 bestθ̇ ← θ̇

11 if ‖~e‖ ≤ ERROR_TOLERANCE then
12 break
13 J ← Jacobian(θ′)// calculate Jacobian of θ′

14 J−1 ← CalculateInverse(J)// using one of the possible methods

15 θ̇ ← J−1 · ~e
16 θ′ ← θ′ + θ̇
17 ~s← ForwardKinematics(θ′); // calculate EE position and/or orientation from θ′

18 end
19 return θ + bestθ̇

problem is more under-constrained (or redundant) than ours. One of the consequences of that is that the null-space

projection operator in his situation will allow for the secondary task to perform much better than in our case.

Finally, within his techniques, Baerlocher also suggests the use of Maciejewski’s method for computing an

appropriate damping factor based on the minimum singular value of the Jacobian [77]. Let bmax be a bound on the

norm of the solution such that ‖J†λ∆x‖ ≤ bmax, then Maciejewski’s damping factor can be calculated through

Equation 3.15.

λ =


d
2 if σmin ≤ d

2√
σmin(d− σmin) if d2 ≤ σmin ≤ d

0 if σmin ≥ d

d =
‖~e‖
bmax

(3.15)

Conclusions drawn from the comparison of several Jacobian techniques (e.g., Jacobian Transpose, Damped

Least Squares (DLS), Selectively Damped Least Squares (SDLS)), both by Buss [72] and by Aristidou [67] are that

the Jacobian methods are mostly appropriate for single end-effector situations, not always suitable for time-critical

situations (e.g. real-time computation) and the incorporation of constraints using this family of methods is neither

straightforward nor controllable towards an optimal solution. Furthermore, while the SDLS seems to be the most

promising method, it is not clear how to use it along with a secondary task.

To conclude this section we share the base pseudocode for such methods in Algorithm 1.
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3.2.2 Data-driven, Probabilistic and Hybrid Approaches for IK

Regarding expressive posture control, Neff & Fiume have presented the Body Shape Solver [78] which addresses the

problems of pose modelling, balance, and world-space and body-space constraints into a single integrated inverse

kinematics solver for humanoid skeletons. The technique can be used by animators to solve for character poses

either based on a given set of parameters, or by selecting a shape set. However their algorithm is specific to the

human body, as it is a hybrid technique that uses both analytical and optimization methods.

Grochow et al. propose an IK system that is trained through a set of human poses [79]. The poses selected

will therefore define the style of the resulting motion. By training with different poses, one can drive the solver to

produce different styles of animation. A key feature is that it can both extrapolate a new pose from a style training

set, while also allowing to interpolate between different styles. However, despite addressing the problem of style

and expressivity of IK, the system was especially developed for motion capture, and requires off-line training, which

confines the results to be highly dependant on the quality of the training data.

Courty and Arnaud propose the Sequential Monte-Carlo IK (SMCIK) solver, that models the problem using a

probabilistic point of view, using a Monte Carlo approach [80]. The SMCIK solver is formulated as a filter whose

state is the entire complex articulated figure. An interesting aspect of the algorithm is that it produces a complete

motion, from initial position, to the target position, as a result of the optimization process. This solution however

does not offer proper control over the quality of the resulting animation, and does not guarantee that a solution is

found. Also, due to the random nature of algorithm, each execution will produce a different solution. In the best

cases, what it guarantees is the achievement of a solution, but not how consistent or reliable it is.

The Particle IK Solver, featured in the video-game Spore, was developed to allow characters with various custom

morphologies to walk naturally and to perform actions in their surrounding environment such as looking towards

a direction, or grasping an object [81]. It allows such creatures to behave coherently by performing locomotion

and animated actions in a procedurally generated world.. They preserved a traditional animation workflow so that

artists could take a central role in the development process. The main concern was to keep animations looking as

natural as possible, and allowing artists to design them in a generalizable way, so that their stylistic details could

remain across characters. The Spore engine is aimed specifically at the types of creatures used in the game, which

contain leg groups and arm groups, and perform a set of pre-determined actions. Hecker mentions that they failed to

attain naturally controlled poses using the common iterative non-linear solvers such as CCD, Jacobian methods or

Constrained dynamics. The Particle IK Solver was therefore developed to allow characters with various custom

morphologies to walk naturally and to perform actions in their surrounding environment such as looking towards

a direction, or grasping an object. Particle IK can solve for various goals by using embodiments that result in an

underdetermined system, i.e., ones that will result in more DoFs than IK goals. Therefore the remaining DoFs can

be used to achieve secondary objectives. The solver runs in two phases. First it solves for the spine of the character

and then for the limb poses, while treating the spine as fixed. Their argument was that a single-phase solver based

on existing techniques did not allow them to make specific ad hoc tuning adjustments or treat special cases, without

compromising the quality of the solution in other areas of the pose. By elaborating a new solver, they managed to

achieve local control over the solution, which was not possible using conventional IK techniques. As a down side,

the system proposed by Hecker is heavily directed at the type of creatures used in Spore, and uses techniques that

assume the existence of 3-DoF joints, which we do not consider in robotics.
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3.2.3 Heuristic IK Techniques

This sub section presents IK techniques that are solved as an iterative search. Cyclic Coordinate Descent (CCD)

is a popular IK technique, both in computer graphics animation, robotics, and even in protein science [82, 67].

Some of its main advantages are that it is very easy to implement, fast to compute, and has linear-time complexity

regarding the number of DoFs. In each iteration it starts from the end-effector, and moves inwards towards the

base, adjusting each joint angle at a time, in order to minimize the distance between the end-effector and the target

position. This procedure is repeated until either the error is considered to be minimal, or until a maximum number

of iterations has been ran. Despite its simplicity and efficiency, the enforcing of constraints remains as a difficult

problem. Constraints are applied locally, and it does not provide an intuitive way to enforce them globally. Figure

3.4 shows the execution of CCD.

Running CCD with constrains also implies in many cases that throughout the iterative process, the solution

might not always improve, thus requiring an adequate heuristic to select the best solution from within all the ones

that were computed. It was initially designed for a single end-effector, although a multiple-chain method has been

described in [83] by dividing the structure into smaller sub-chains, and solving them each independently.

The major problems pointed out to CCD however, are the production of unrealistic and non-continuous motion

across subsequent solutions, and the overemphasising of the movement of the joints near the end-effector which

leads to unnatural motion.

Johnson has proposed an Expressive IK solution that also uses expert body knowledge (example poses given by

animators) to augment the quality of the results given by a CCD algorithm [84]. The examples are both used to

estimate joint constraints, and also to perform multi-target pose blending which would then be used as an initial

solution before the IK algorithm is ran (this step was not developed, however).
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Figure 3.4: An example of a visual solution of the IK problem using the CCD algorithm. (a) The initial position
of the manipulator and the target, (b) find the angle θ between the end effector, joint p3 and the target and rotate
the joint p4 by this angle, (c) find the angle θ between the end effector, joint p2 and the target and rotate joints p4
and p3 by this angle, (d), (e) and (f) repeat the whole process for as many iterations as needed. Stop when the end
effector reaches the target or gets sufficiently close. Description and image cited verbatim from [85].

The algorithm, QuCCD, is a Quaternion-based version of the popular CCD algorithm. QuCCD includes a fast

joint-limit constraint approach similar to [86], that takes on a geometrical approach instead of clamping angles as

usual (which would require converting the quaternion to Euler angles, clamp, and then back to a quaternion).

Some of Johnson’s proposed techniques were used to animated Anemone, an expressive IK robot [87]. This

robot used a hybrid between pose-blending, for the DoFs near its base, and QuCCD, to animate the upper half, so

that it could both maintain an expressive posture, while still facing its "head" towards things in its environment.

The whole computation was performed through quaternions, holding off the conversion until "just-in-time", before

converting and sending the actual Euler angles to the motors. Despite presenting promising results for 3D animated

characters, the author does end up announcing that “this method tends to produce very slow convergence for 1 DOF

joints which are constantly bumping into a boundary”.

FABRIK is an iterative method that takes on a geometric approach to the IK problem [88, 89]. It was inspired

by the knot-tying problem [90] and borrows the idea of iterating through each joint individually as in CCD, but

instead works in the joint-position space (instead of angles), and each iteration includes a forward step (traversing

from the end-point to the base) followed by a backward step (that traverses from the base back to the end-point).

The adjustment of each joint is treated as a a problem of finding a point in a line. Figure 3.5 illustrates the

execution of the algorithm, as further described.

We must first establish that di = |Pi+1−Pi|, for i = 1, ..., N , is the length of each segment i. FABRIK starts by

moving the end-effector PN to the target position t, becoming P ′N . This is an operation that can only be performed
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Figure 3.5: An example of a full iteration of FABRIK for the case of a single target and 4 manipulator joints. (a)
The initial position of the manipulator and the target, (b) move the end effector p4 to the target, (c) find the joint
p03 which lies on the line l3 that passes through the points p04 and p3, and has distance d3 from the joint p04, (d)
continue the algorithm for the rest of the joints, (e) the second stage of the algorithm: move the root joint p01 to
its initial position, (f) repeat the same procedure but this time start from the base and move outwards to the end
effector. The algorithm is repeated until the position of the end effector reaches the target or gets sufficiently close.
Description and image cited verbatim from [88].

in virtual space, as it intentionally breaks the kinematic configuration of the system by stretching the last segment.

However, after this initial move, each successive link Pi is moved to a new position, towards P ′i+1, following the

joint position update rule:

Pi = (1− λ)Pi+1 + λPi,

λ =
di

|Pi+1 − Pi|

(3.16)

After the forward phase, the Root joint will most likely end up in a position that is not the Origin of the space as it

was initially. This happens because each joint, starting at the end-point, was pulled or pushed, in Cartesian space. In

order to bring the kinematic chain back to the Origin, the backward phase starts by moving the Root P1 so that

P1 = O. Just as in the first step of the forward phase, this operation also stretches (or shrinks) the first link to an

invalid length. So again, but now in inverse order, each joint is traversed and moved to reset the segments to their

initial length, while keeping the Root centred at the Origin, and having successfully pulled the end-point closer to
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the target position. The backward joint position update rule is similar to the forward one:

Pi = (1− λ)Pi + λPi+1,

λ =
di

|Pi+1 − Pi|

(3.17)

After the forward phase, the Root joint will most likely end up in a position that is not the Origin of the space as

it was initially.

This happens because each joint, starting at the end-point, was pulled or pushed, in Cartesian space. In order to

bring the kinematic chain back to the Origin, the backward phase starts by moving the Root L1 so that P1 = O. Just

as in the first step of the forward phase, this operation also stretches (or shrinks) the first link to an invalid length. So

again, but now in inverse order, each joint is traversed and moved to reset the segments to their initial length, while

keeping the Root centred at the Origin, and having successfully pulled the end-point closer to the target position:

The backward joint position update rule is similar to the forward one:

Pi = (1− λ)Pi + λPi+1,

λ =
di

|Pi+1 − Pi|

(3.18)

This technique was created for, and works in virtual space, as it intentionally breaks the kinematic configuration

of the system by stretching each segment during the Forward phase, which most likely ends up bringing the base

joint to a position that is not the origin of the space as it was initially. However the Backward phase solves this,

while bringing the whole kinematic solution closer to a solution. By working directly in the joint-position space,

FABRIK avoids calculation of angles, which is one of its main advantages, making it even faster to compute than

CCD. Other of its main features are that it does not suffer from singularity problems, produces naturally smooth

and continuous motion, and emphasises movement in the joints closer to the base. Following an approach similar

to [83], it also supports multiple end-effectors, and as such, full-body IK solving. Regarding the application of

constraints, the authors present successful results in a system where each link is modelled as a generic 3-DoF, by

decomposing the induced quaternions into swing and twist components, and enforcing limits on them separately

following on the method described in [86].

Starke presents the Hybrid Genetic Swarm Algorithm (HGSA) for IK, using a biologically-inspired optimization

technique as a universal IK solution for arbitrary joint chains [91]. The technique merges both the concept of

Genetic Algorithms (GA), and of Particle Swarm Optimization (PSO). GA typically provides high-quality solutions

to optimization and search problems, driven by theories of natural evolution. PSO is an optimization technique

inspired by the behaviour of bird flocks and schools of fish, following the idea that complex behaviour can emerge

from a collectivity of simpler organisms. HGSA is reported to achieve a sucess rate of nearly 100% within 10-60ms.

However it does not support multiple end-effector or self-collision avoidance.

3.3 Expressive and Animated Social Robots

This section starts by presenting existing theories and design principles that have been proposed regarding specifically

the design of robotic expression. These works are intended as broad, or general theories, without being tied to a
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specific embodiment or application. It follows with a list of various robotic embodiments, along with example

works that have explored their expressive capabilities.

Regarding the design of believable social robots, Dautenhahn [92] divided the design process in two dimensions:

the Universal dimension, in which the universal features of a behaviour or expression are abstracted; and the Abstract

dimension, in which the designer of the behaviour or expression is free to be creative and develop a more artistically

based result.

Meerbeek et al. also follow the Universal vs. Abstract dimensions of design, stating that ’since human

expressions cannot be mapped one-to-one with expressions of the robot, we abstracted the human expressions first’

[93]. The same authors defend that the design of behaviour and expressions of robots should be a blend between an

artistic approach and an iterative cycle to evaluate and refine the result, which follows the usual practice both in

engineering and usability design. They also consider that using virtual 3D models for animating and visualizing the

expressions of a robot is useful, especially if the virtual model is designed with resemblance to the real physical

model and its behaviour.

An important expressive feature in robots that is absent in human expressivity is the use of lights and sounds.

Bethel [94] has studying the expression of emotions in robots that do not possess typical expressive capabilities fuck

a face or arms. Her work focuses on robots that are mean to be functional, such as search-and-rescue or military

robots, and how to use multi-modal expression for the correct communication of the robot’s emotional state and

empathic behaviour.

Saerbeck and Bartneck have also studied an abstraction of robot expression by attempting to correlate robotic

motion with the perceived emotions by the users [95], and concluded that there exists a correlation between a robot’s

acceleration, and the perceived arousal.

Hoffman & Ju have presented some techniques, especially based on previous experiences, about designing

robots with their expressive movement in mind [96]. They provides useful insights on how the embodiment and

expressive motion are tightly connected, and how the design of expressive behaviour may be considered as part of

the design of the actual robot, and not as an after-step.

Knight has developed the Computational Laban Effort (CLE) framework [97]. Based on the Laban Effort

System, it allows a low degree-of-freedom robot to modify its task motion in order to convey varying internal states.

The main goal is to enable an expert system from dance and acting training to be used in robotic systems, while

prioritizing task completion over expression. The process does however require multiple steps and procedures in

order to implement the framework into one particular robot, for a particular task, as described by the following five

steps:

1. Select the Laban features that the robot can use, given its degrees of freedom and task;

2. Specify the motion generation parameters for each feature;

3. Calibrate the motion generation with human experts;

4. Follow a user-centred or interactive design methodology, or machine learning approach to establish a Laban

Effort parametrization for each desired communicative state;

5. Deploy the expressive motion to the robot’s behaviour system.
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3.4 Animated Robots

Various authors have already presented a large range of robots and papers describing the design and use of robots’

expressive behaviour. In particular, Schulz, Torresen & Herstad have recently provided a literature review on the use

of animation techniques in human-robot interaction user studies [98]. We highly recommend the interested reader

to consult that document for an extensive read on the topic. In this section we present a selected short review of

various existing social robots applications with emphasis on their expressive features and capabilities.

Out selection includes not only papers referring to studies in the field of HRI, but also to companies and research

laboratories that produce robots or are related to the field of HRI, in order to gather direct references to robots (i.e.

if it is a commercial product), or to its original release (i.e. if it is produced by a particular laboratory). We did not

include ones that we considered too outdated, nor ones designed with very domain-dependant expressive features,

both of which would not provide such a valuable knowledge for general use at date (e.g. expressivity towards

children with autism). We further recommend the reader to visit The Robot-Facebook3 website, which collects a

varied set of real and fictional robots, organized into various categories. The robot list below is order by first release

or public presentation date, and within it is organized in alphabetical order. Some exceptions might occur where

more than one robot is presented together, when they have a close relation and share the same creator.

Aibo4 (1992), Sony

Sony is famous for creating AIBO early in 1992, the dog-shaped robot that can play tricks and is aimed at becoming

a member of our family. Since then it has evolved through many versions, with its latest (fourth) generation dating

from 2018. In this paragraph we will refer to the AIBO ERS-7 from 2003, which belongs to the third generation

[99]. AIBO has 20 degrees of freedom, with 3 DoFs in each leg, a pan, tilt and roll joints on the head, a 2-DoF

controllable tail, plus an additional joint for the mouth, and one for each ear. Its head also features two LED panels

that can be used to display various emotional eye shapes.

PaPeRo (1997), NEC

The PaPeRo is a small childcare mobile robot with a minimal face that contains only two eye-spots (only holes, and

not actual stylized eyes) an LED for the mouth, and a pair of LEDs for the ears [100]. Its head can tilt up and down,

and pan sideways. It was used in various different scenarios with children in which it was controlled by an operator.

Within those, it could perform speech, sound and music effects, move around, and use its mouth and ears LEDs to

express itself, while reacting to face recognition, some keywords (through speech recognitions), and to touch, using

sensors spread around its body.

eMuu (2002), Christoph Bartneck

Bartneck created the eMuu robot as an abstract face containing only an eyebrow and a lip, which was sufficient to

express emotions [14]. eMuu can tilt and pan its head in order to exhibit keep-alive behaviour. Its internals were

built using Lego Mindstorms, while its outside (hull) was made of soft polyurethane.

Roomba5 (2002), iRobot

The popular autonomous robotic vacuum cleaner Roomba is considered to be the first ever robot to succeed in

the consumer and home appliance market. it has also been used in studies regarding domestic robot ecology, and

3http://robotfacebook.edwindertien.nl (accessed January 12, 2019)
4http://www.sony-aibo.com (accessed January 12, 2019)
5http://www.irobot.com (accessed January 12, 2019)
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how people accept and adopt robot devices in their homes in the long term [101]. Although it appears to be an

expressionless robot, it is, in first instance, a mobile robot which can move forwards and turn 360°in place, thus

allowing it to perform expressive motion through its trajectory. Additionally, the robot allows to be hacked and

extended. Roomba has been coupled with an RGB-LED mood ring, which allows it to communicate using a

multi-color halo [102], and has also been added an expressive tail, which, inspired by canine behaviour, can wiggle

to signal certain events and emotions, such as wiggling happily when it finds dust and dirt, or exhibiting an fearful,

apprehensive posture when it becomes stuck [103].

Interactive Theatre (2003), MIT Media Lab

In 2003, Breazeal and colleagues presented the Interactive Theatre [29]. This is one of the first robot animation

systems to be developed with interactivity in mind, by blending AI and an artistic perspective. Several robotic

anemones were animated in collaboration with animators to portray a lifelike quality of motion while reacting to

some external stimuli like the approach of a human hand. These animations were driven by parameters which

were controlled by a behaviour based AI to dynamically change the appearance of its motion depending on events

captured by a vision system [104].

Kismet6 (2003), MIT MedialLab

The Sociable Machines Project at the MIT Media Lab developed Kismet, an expressive robotic face with stylized

anthropomorphic features [105, 30]. It is equipped with visual, auditory and proprioceptive capabilities, and can

express itself through vocalizations, facial expressions, gazing and eye- and head-direction. It contains a total of

15 DoFs in its face, which control its ears, eyebrows, eyelids, lips and jaws. Its affective state is based on a PAD

space (arousal, valence and stance), and specifies 10 emotions: fear, sorrow, surprise, boredom, joy, interest, disgust,

calmness and anger. Based on each emotions PAD position, Kismet can also display emotions that result of blending

between these.

QRIO7 (2003), Sony

QRIO is a bipedal humanoid entertainment robot, approximately 60cm tall, with legs that can be used for postural

expression of to walk and run at up to 23 cm/s, arms that can be used to perform gestures and balance, and a face

that contains only two illuminated eyes slots [106].

Leonardo8 (2004), MIT MedialLab

One of MIT Media Lab’s most famous robots is Leonardo, a 65-DoF robot that is approximately 75cm tall and

has been specifically designed for expressive social interaction with humans [107, 108, 104]. It was designed

as an anthropomorphic furry creature in collaboration with Stan Winston Studio 9. Leonardo can interact and

communicate with people through speech, vocal tone, gestures, facial expressions, and also perform simple object

manipulations. Inspired by Kismet, its computational architecture contains affective factors that influence and

interact with the cognitive elements of the system. It affect space is however modelled in a two-dimensional system

(valence and arousal) over which seven facial poses are defined.

Robosapien10 (2004), WowWee

The Robosapien X is a biomorphic toy robot that can either be programmed to perform entertaining moves, or be

6http://www.ai.mit.edu/projects/sociable/baby-bits.html (accessed January 12, 2019)
7http://www.sony.net/SonyInfo/CorporateInfo/History/sonyhistory-j.html (accessed January 12, 2019)
8http://robotic.media.mit.edu/portfolio/leonardo (accessed January 12, 2019)
9http://www.stanwinstonschool.com (accessed January 12, 2019)

10http://wowwee.com/robosapien-x (accessed January 12, 2019)
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remote controlled using a control with 21 different buttons. It was used in an early example of trying to evoke

the illusion of life in robots through character animation practices [109, 110]. However the authors explore a very

shallow concept of the illusion of life, and present character animation practices as the designing of animations for

robots using 3D animation software (Autodesk Maya), from which the exported motion requires a post-processing

step to correct for the robot’s balance.

iCat11 (2005), Philips Electronics

The iCat is a plug and play desktop robot that can perform facial expressions, move its head around, display

expressive lights, and to respond to touch on its paws. As the name suggests, it is designed to resemble a cartoonish

cat, with expressive eyebrows and a eyelids, orientable eyes and its rubber lips that allow to portray smooth mouth

shapes. It became notoriously useful and popular as a robot that is ideal for interaction with children, and in

scenarios in which personality and animation qualities play a role [9, 111]. In particular, Leite et al. developed and

autonomous scenario for long-term interaction in which the iCat plays and teaches chess to school children [112]. It

explores an empathic model that drives the robot’s emotional display and decision-making, by e.g. allowing the child

to choose another option after selecting a bad move, feeling sad when the child performs bad, and remembering and

recalling on previous interactions.

Keepon12 (2007), Hideki Kozima, National Institute of Information and Communications Technology, BeatBots

LLC

The Keepon is a small yellow table-top robot that is shaped like two glued tennis balls (albeit yellow) [113]. However

unlike tennis balls, its body is made of soft rubber, which allows it to bend, squash and stretch while performing

motion based on its four motors: pan, tilt, roll and bounce (stretching up and down). It has two decorative eyes and

a nose. It is distinguished as a very simple, minimalist, small and affordable robot that is also child-friendly. With

that purpose, it was used on a collaborative build-a-rocket computer game [114]. As a minimalistic, abstract robot,

it was used to explore Laban Efforts by Knight & Simmons [115]. Because the Keepon contains no sensors, it relies

on external ones such as a Microsoft Kinect, to provide user-perception. It was also used in the E-Fit scenario, in

which the robot is delivered to people’s homes so that children can interact with it daily. The robot takes the role of

an alien whose space ship broke down on Earth and who needs help from the child in order to return home. The

child helps the robot by exercising routinely and transferring the acquired "energy" to the robot by doing so [116].

Nexi13 (2007), MIT Media Lab

The Nexi robot, created by MIT Media Lab, is an anthropomorphic robot consisting of a very expressive face, placed

on a self-balancing two-wheeled mobile base which also has two arms and hands [117, 104]. Its head and neck are

highly polished and white, with smooth edges that convey a stylized human like look. In order to be expressive it

can move its eyebrows, mouth, and orbit its eyes, all while performing 3D motion with its head (pan, tilt, roll).

Paro14 (2007), Intelligent Systems Research Institute, AIST

The Paro is a seal-shaped therapeutical robot that is considered to convey a healing effect, especially in the elderly

population [118]. Its body is soft and furry, and is equipped with tactile sensors that allow it to respond to human

touch. It also contains a light sensor, sound source direction detection, speech recognition and balance sensors.

11http://robotfacebook.edwindertien.nl/product/icat (accessed January 12, 2019)
12http://beatbots.net/my-keepon (accessed January 12, 2019)
13http://robotic.media.mit.edu/portfolio/nexi (accessed January 12, 2019)
14http://www.parorobots.com (accessed January 12, 2019)
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While shaped like an animal, it is not intended to move around freely. Instead it was designed to be held by a human

or kept in its lap, and can express itself through neck movements, front and rear fin movements, and independent

eyelid movements.

Zeno15 (2007), Hanson Robotics

The Zeno Robokind Zeno is a humanoid robot with a mechanical structure that is similar to that of the NAO, but

featuring a very expressive lifelike face. A particular work that we found explains how a closed-form IK system

was built for such a robot [119]. A closed-form solution is an analytical solution, made specifically for this robot.

However, the authors describe how they captured a human motion using the Microsoft Kinect, and then transferred

that motion to the Zeno using the mentioned closed-form IK solution.

AUR (2008), MIT Media Lab

The AUR is a robotic desk lamp with 5 DoFs and an LED lamp which can illuminate in a range of the RGB color

space [120]. It is stationary and mounted on a workbench. It is controlled through a hybrid control system that

allows it to be used for live puppeteering on stage, as an actor. The purpose was to allow the robot to be expressive

while also being responsive. In general, a responsive robot would not have proper control for its expressivity, while a

properly expressive robot would have to rely on pre-designed animations, and as such. Considering their case, robots

used on stage were generally controlled by several extensively trained puppeteers, and still, proper eye contact was

virtually impossible to achieve. For AUR, the motion was composed through several layers. The bottom-most layer

moves each DoF based on a pre-designed animation that was made specifically for the scene of the play. If the robot

was set to establish eye contact, several specific DoFs would be used to calculate an IK solution using CCD, and the

result was used to override the motion of the scene layer. A final animacy layer added smoothed sinusoidal noise,

akin to breathing, to all the DoFs, in order to provide a more lifelike motion to the robot.

NAO16 (2008), Aldebaran Robotics, Softbank Robotics

The NAO robot is one of the most popular robots used in research and in human-robot interaction. We will mention

some works that we have found to contribute specifically to autonomous expressivity using this robot. Our own

previous work has included NAO into the Nutty Tracks animation engine that allows animators to create expressive

behaviours for the robot and to merge them with procedurally-based motion [121]. It has also been used within

the SERA ecosystem for the EMOTE project, in which NAO became an autonomous empathic robotic tutor for

classrooms [42]. In EMOTE, the robot interacted simultaneously with two children and with a virtual learning

application that was running on a large touch table. The behaviour of the robot was designed to drive the children’s

attention to the learning application and learning goals, while still providing social behaviour as both a peer and

a tutor. In general attention was directed through gaze and gestures, with gaze being controlled with a gaze-state

machine that considered gaze-breaking, or gazing towards the students’ actions (e.g. gazing at them when they were

speaking, or directly at the point of the touch table where they clicked). The robot relied on a Microsoft Kinect and

on lavalier microphones in order to manage its gazing between the students’ actions, the task, and its own actions. In

[122], NAO was used as an autonomous social robotic tutor for second language learning in a one-to-one setting. Its

behaviour was also designed for high nonverbal immediacy, with random gazes towards the child, gestures during

speech, forward lean of the body, and keeping the arm’s motors noises low to give the impression of being relaxed.

The work by [123] also presents NAO as a robotic tutor, in a factions calculation scenario for school children. A
15http://www.hansonrobotics.com/zeno (accessed January 12, 2019)
16http://www.softbankrobotics.com/emea/en/nao (accessed January 12, 2019)
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less recent but relevant work that explores the expressivity of the NAO robot is [124], where the LEDs of the robot’s

eyes are used to provide it with eye shapes. While NAO does not have mechanical eyes, and was not designed to

provide expression through them (except for changing the colors of the LEDs), the authors suggest an interesting

control of individual LEDs to create expressive eye shapes for Neutral, Happiness, Sadness, Anger, Fear, Disgust

and Surprise.

Simon (2008), Georgia Institute of Technology

Gielniek, Thomaz and colleagues have been exploring ways of actually algorithmizing some of the principles of

animation as motion signal processing algorithms which can be used in real time, as they demonstrate using the

Simon robot (e.g, [32]). In particular they created an algorithm that generates exaggerated variants of a motion in

real-time, relying only on one tuning parameter α, as the authors believe optimality is context-dependent and so the

exaggeration factor should be controllable.

CoBot17 (2009), Carnegie Mellon University

The CoBots are a family of mobile indoor service robots that have been developed at the Carnegie Mellon University

since 2009. They operate on a four-wheeled omnidirectional drive, have a touchscreen for direct user input, and a

container to carry and deliver diverse objects [125]. The CoBot robots perform autonomous indoor localization in

order to navigate through multiple levels of a building. In order to use the elevator, they resort to shared autonomy,

i.e., while placing themselves in from of an elevator door, they will 1) call out for some by-passer to press the

elevator button; 2) ask someone in the elevator to press the button corresponding to its destination level. When faced

with an obstacle, it can also perform an auditory notification so that people can clear away its path. Additionally,

light can be appended to it in order to further reveal its internal state [126]. Thanks to its omni-drive, it can perform

complex motions, which may also be exploited for their expressivity. Knight & Simmons have explored the use of

Laban Effort Features to perform expressive motion in the XY (horizontal travel) and in the θ (rotation) dimensions.

HERB (2009), Carnegie Mellon University

HERB, the Home Exploring Robotic Butler is a mobile robot with two large arms with hands that can grasp

objects (the first version had only one arm) [127, 128]. The challenge of providing legible and predictable motion

to autonomous collaborative robots has been addressed by Dragan et al. using the HERB robot [129], which

demonstrates the benefits of including such properties into motion planners. Their technique however focuses on

these two properties in particular, and rely on motion-planning for trajectory generation. Admoni has also used

HERB to study nonverbal communication in socially assistive HRI [130].

iCub18 (2009), Italian Institute of Technology

The iCub is a humanoid robot that was developed for research in embodied cognition [131]. It mimics a three and a

half year old child, is able to crawl and sit while manipulating objects.

Mung (2009), Korea Advanced Institute of Science and Technology

The Mung robots are a set of three simple shaped robots consisting only of a round body and two eyes [132]. The

three versions of it correspond to a bread-bun-shaped body, to an egg-shaped body, and to a pot-shaped robot. The

bodies are made of translucent acrylic in order to allow it to display internal emotional states using color LEDs.

The eyes are made of metal. Using the internal LEDs, the robots can exhibit various expressions which are seen

through its translucent body as bruises or blushes.
17http://www.cs.cmu.edu/~coral/projects/cobot (accessed January 12, 2019)
18http://www.icub.org/ (accessed January 12, 2019)
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Snackbot (2009), Carnegie Mellon University, United States Naval Academy

The Snackbot robot is a service robot with a minimalistic anthropomorphic shape, with a simple head, and two

non-functional arms that hold a tray upon which it can carry objects [133, 134]. In particular, as its name implies, it

was created to deliver various types of snacks within two connected buildings. It uses a differential-drive mobile

base along with bumpers, sonars and a laser scanner in order to navigate while detecting and avoiding collisions.

The head was designed with interesting factors in mind. It is round, but wider than taller, in order to suggest it

being a young, friendly robot. The details of the eye sockets were kept minimal so that the customers would not

develop false expectations about the robot’s intelligence. A 3x12 LED display was placed on the mouth region in

order to convey more meaningful expression such as lip shapes, colours and movement during interaction. Finally,

minimalistic non-functional ears were also added so that the customers would understand that the robot could hear

them.

AIDA19 (2010), MIT Media Lab

Various interactive social robots have been created at MIT’s Media Lab [104], in particular the AIDA, which is

a friendly driving assistant for the cars of the future. AIDA interestingly delivers an expressive face on top of an

articulated neck-like structure to allow to it move and be expressive on a car’s dashboard.

PR-220 (2010), Willow Garage

The use of animation principles was explored by Takayama, Dooley and Ju [31] using the PR-2 robot. This is a large

mobile robot with two arms, that can navigate in a human environment. A professional animator collaborated on the

design of the expressive behaviour so that the robot could exhibit a sense of thought, by clearly demonstrating the

intention of its actions. Thought and Intention are two concepts that are central in character animation, and in the

portrayal of the illusion of life. In this case they focused on making both the intention of the robot, and the robot’s

reaction to its own action more readily apparent to interactants and bystanders, in order to facilitate coordination of

their actions with those of the robot. They formulation a robot’s animations as functional motions (e.g. grabbing a

door knob), and expressive motions (e.g. looking at the door handle and scratching its head), although these are

not completely separate concepts (e.g. in some situations being expressive is a functional part of the task). The

conducted a study measuring readability of robot forethought, perception of robot forethought, and perception of

robot reaction, and conclude that showing forethought makes a robot seem more appealing and approachable.

Robovie21 (2010), Vstone Co., ATR

Vstone Co. and ATR created the Robovie (R3) robot, which is a healthcare and guide robot. Its mobility is enabled

by an omni-wheel base, while its body is anthropomorphic, with arms and a nearly faceless head. Its face contains

only two eye placeholders, which do not move, but instead, contain cameras that allow it to perceive its surrounding

environment.

Shimon and Travis (2010, 2012), Georgia Institute of Technology, IDC Herzliya

Hoffman has created interactive robots that behave in a musical environment. Shimon is a gesture based musical

improvisation robot that plays marimba [135]. Its behaviour is a mix between his functionality as a musician, for

which he plays the instrument in tune and rhythm, and being part of a band, for which he performs expressive

behaviour by gazing towards his band mates during the performance. Travis is a robotic music listening companion

19http://robotic.media.mit.edu/portfolio/aida (accessed January 12, 2019)
20http://www.willowgarage.com/pages/pr2/overview (accessed January 12, 2019)
21http://www.vstone.co.jp/english/products/robovie_x (accessed January 12, 2019)
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also created by Hoffman, that acts as an interactive expressive music dock for smart phones [136]. The system

allows a user to dock a smartphone and request it to play a music from some play-list. The robot plays it through a

pair of integrated loudspeakers while autonomously dancing to the rhythm. The music beat is captured by real-time

analysis in order to guide the robot’s dance movements. Those movements are simple "head banging" and "foot

tapping" gestures that are easily programmable. Both robots are controlled by a similar control system that relies on

dead-reckoning. Beat-matching is insured by an overshoot and interrupt approach, and the motion is smoothed using

a high-frequency trajectory interpolator, insuring that the final motion is rendered at a fixed rate of 50Hz. The authors

present two main advantages to this approach: (a) they are "able to generate a more expressive spatio-temporal

trajectory than just a trapezoid, and we can add animation principles such as ease-in, ease-out, anticipation, and

follow-through"; and (b) "since the position of the sliders is continuously controlled, collisions can be avoided at

the position request level".

Sparky22 (2010), Walt Disney Imagineering Research

The Walt Disney Imagineering Research & Development has developed the stylized anthropomorphic Sparky

Minimatronic™. It is a robotic marionette that uses 18 R/C servo motors: 4 for each arm, 2 for each leg, 2 for the

neck, 1 for the mouth, 1 for the eyes, 1 for the eyelids, and 1 for its spine [137]. Its puppet-like structure allows it to

be lightweight and to perform highly dexterous, fluid and natural movements.

EMYS (prototype, commercial)23 (2010, 2018), Wrocław University of Technology, EMYS Inc.

The original EMYS robot was developed back in 2010 for the EU FP7 LiREC project24 [138]. Pereira and colleagues

showcased an EMYS robot that continuously interacts with both users and the environment while playing a multi-

player board-game, in a way to provide a more lifelike experience25 [139]. This was the first autonomous robot

to interact simultaneously with several human players through a video game running on a large touch-table. The

social nature of this application required EMYS to be able to blend several animation modalities in real time, such

as gazing towards a person while performing an expressive emotional animation, or changing the overall look of

its idle behaviour in order to portray its internal emotional state, while still reacting to the presence of the other

players. Such highly expressive requirements lead the creators to also drive inspiration from animation principles

and practices, and designed EMYS’s animations following an artistic approach, thus becoming one of the first

autonomous social robots to be animated using professional animation software [22]. These technical developments

were later extended and became the Nutty Tracks animation system that can be used for any robotic embodiment

[121]. More recently, EMYS has been used along with Nutty Tracks to play the Sueca card game, in which human

users play with the robot using real physical cards [140]. Note that all these works refer to the prototype Emys

(2011), which was developed in two versions: MkI and MkII, while we add a reference to the new commercial

version of Emys (2018) which is being released soon and although it contains many of the features of the prototype

Emys, its design and build was revamped and some of its expressive channels were removed or modified (e.g. no

neck tilt, but eyes became LCD displays and includes and additional screen display)

Probo (2011), Ghent University, Vrije Universiteit Brussels

The Probo huggable robot is used for robot assisted therapy applications. It was designed with the purpose of

22https://rasc.usc.edu/sparky.html (accessed January 12, 2019)
23http://emys.co (accessed January 12, 2019)
24http://lirec.eu (accessed January 12, 2019)
25http://vimeo.com/56200151 (accessed January 12, 2019)
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exhibiting the illusion of life so as to facilitate engaging interactions with humans, which is especially relevant

within social therapy applications [141]. The robot has a fully actuated head with 20 DOF capable of communicating

emotions an attention, and is implemented as a semi-autonomous system, with shared control with a human operator.

The system is composed of various modules such as Perceptual-System, a Control-System, an Expressional-System,

and a Motor-System. The first two working together allow the robot to track a certain face or object, or to gaze

towards a the direction of a sound source. Within the Control-System there is also an emotional state that is based

on internal needs (modelled as a homeostatic system), which are influenced by the perceived actions, and influence

the selection of its expressive behaviour (facial expressions). The authors argue that this composition in which each

block has its own functionalities allows them to be used with other robots or agents. The animation system allows to

combine pre-designed motion sequences with direct control from the operator. It includes several graphical tools

that allow the authoring of keyframe-based animations (Sequence Editor), and real-time operation and manipulation

of how these are mixed and played-back on the robot (Animation Player and Motion Mixer). The various outputs

are combined using a Combination Engine, which considers several types of keyframes to specify how overlaid

animation sequences should be blended. In order to allow a smooth initiation and termination of an animation

sequence, when played over another previous sequence or expression, each sequence must be authored in order

to consider an initial time-interval during which the underlying motion can be blended out of, and then back into.

The resulting motion is filtered using a cascade of first order software low-pass filters, with a different attenuation

parameter used for each body part.

Sphero26 (2011), Sphero

Sphero is a spherical robot launched in 2011 that can move by rolling under control of a smartphone or tablet.

While it seems not to contain any expressive features it can in fact portray an expressive character through motion

and through its lights. Faria et al. developed communicative intentions using the Sphero ’s motion in order to get

attention, to convey that it wanted a person to follow it and to express happiness and sadness [142].

Baxter27 & Sawyer 28 (2012, 2015), Rethink Robotics

Both Baxter and Sawyer were developed by Rethink Robots, a company founding the Rodney Brooks, the same

founder of iRobot, which created Roomba. Their first robot was Baxter, an industrial collaborative robot meant

to work together with employees at factories and warehouses. It has two arms and a screen that can be used to

display information or an expressive face to its users. It is supported by an adjustable pedestal, which can make it

up to around 1.9 meters tall, and weigh around 140Kg. Its purpose is mostly to perform repetitive tasks such as

loading, unloading, sorting and handling materials, and can be programmed to do so on-site by an employee without

much effort or training. Baxter was later discontinued and succeeded by Sawyer, which is slightly more compact

given that it has only one arm, but its design and functionally meet the same targets as Baxter’s. Besides working in

industrial settings, it has also been used to perform handwriting tasks [143] or to play games with people [144].

Dragonbot29 (2012), MIT Media Lab

The Dragonbot, developed by MIT’s Media Lab, is a small furry desktop robot with a dragon-like appearance [145].

It is particularly aimed at child applications such as educational games [146] The robot can perform squash-and-

26http://www.sphero.com (accessed January 12, 2019)
27http://robots.ieee.org/robots/baxter (accessed January 12, 2019)
28http://www.rethinkrobotics.com/sawyer (accessed January 12, 2019)
29http://robotic.media.mit.edu/portfolio/dragonbot (accessed January 12, 2019)
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stretch through its internal Delta robot platform, which can move its body in 4 DoF. A stretchy synthetic fur allows

its shape to go along with the movement with a natural look. It additionally has a neck tilt DoF and a wiggable

tail. Two hands are used solely as adornments given that they do not have any actuated movement. One of its most

interesting features is that it is fully controlled through a smartphone which is inserted in a slot on its face, and

therefore the smartphone’s screen acts as the robot’s expressive eyes.

Karotz30 (2012), Violet (extinct), Mindscape

The Nabaztag robots are ambient smart electronic devices shaped like a rabbit. Karotz is the third and final

generation. Its two ears can be controlled to portray different stances, along with internal RGB lights the illuminate

portions of its body. However most of its communication is performed audibly, either through speech or by playing

sounds and music. Even as a simple platform, its communicative capabilities and minimalistic, stylized form and

expressivity have lead it to be used in user-studies directed at the usefulness, adoption and engagements that people

feel towards such having devices in their households [147, 148].

Furhat31 (2013), Samer Al Moubayed, Furhat Robotics

The Furhat is a hybrid robotic head that provides rich and fluent multimodal interaction using speech, head motion

and facial expressions [149]. It’s face is backprojected into a physical, translucent mask, using an internal micro

projector. It is then digitally animated in a way that matches the design of the physical mask. The backprojection

face method solves the problem of fluent and natural facial expression, given that such face and expressions are all

rendered using CGI techniques, and therefore it is not constrained by the dynamics of mechanical servos or artificial

skin. Displaying a virtual face on a 3D surface, in contrast to using a 2D display also allows it to perform better in

multiparty interaction by eliminating the Mona Lisa gaze effect [150].

Jibo32 (2014), Jibo Inc.

The robotic home assistant Jibo presented in 2014, created by MIT Media Lab professor and social robotics pioneer

Cynthia Breazeal. It is a small tabletop robot that is somewhat shaped like a spotlight. Its light is however an LCD

touchscreen which allows for bidirectional interaction, i.e., for the robot to display information, expressive and

emotions, but also for the users to directly interact back with it. Additionally it has two speakers that allow it to

speak, play sounds and music. In order to perceive the users and surrounding environment, it contains full body

touch sensors and can perform 360°sound localization. One of the most interesting features in Jibo’s design is the

way its body with a tilted triple-pan full-revolute mechanism. Its body can be seen as composed of two parts: its

torso and its head. Both the torso and the head can pan, however both pan at an angle, which allows Jibo to modify

the apparent shape of its body while these two joints pan in inverse directions. Additionally the base of the torso can

also pan in order to perform these shapes towards any direction.

Pepper33 (2014), Aldebaran Robotics, Softbank Robotics

The Pepper robot is developed by Softbank Robotics (formerly Aldebaran Robotics) and is a modern stylized

humanoid following the design of the same company’s NAO robot. However Pepper is 1.2 meters tall, and stands

on a mobile base, which gives it a better ability to interact with human in their natural environments [151, 152].

Pepper can express itself through its omnidirectional motion [153], using its arms to perform gestures, speech, a

30http://www.nabaztag.com (accessed January 12, 2019)
31http://www.furhatrobotics.com (accessed January 12, 2019)
32http://www.jibo.com (accessed January 12, 2019)
33http://www.softbankrobotics.com/emea/en/pepper (accessed January 12, 2019)
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tabled that is attached to its chest, or its face which can either move around (pan, tilt) or by changing the colour of

the LEDs surrounding its eyes and ears.

Kip134 (2015), IDC Herzliya

The Kip1 desktop robot was designed to promote non-aggressive conversation between people. By monitoring

a conversation’s tone, it reacts with an emotional display of fear whenever the conversations seems aggressive,

otherwise performing a calm behaviour designed to communicate curious interest. The robot’s figure is reminiscent

of a lamp and designed to be both peripheral, evocative and fragile. It has a pan base that can rotate the robot

towards any direction, a tilting head mechanism that is activated by a string, and a multi-action linkage that allows

the robot to seem to stretch and squash. Additionally, the head, being modelled as a passive DoF, reacts to the

robot’s shaking and gravity, giving it a more natural feeling, in what can be seen as the overlapping principle of

animation (despite it being called secondary action by the authors, upon consulting [4] or [154] one finds that it is

in fact overlapping action). [155]

Cozmo & Vector35 (2016, 2018), Anki

Both Cozmo and Vector are a mix between a home assistant and a smart toy robot, both developed and sold

commercially by Anki. Cozmo was their first robot, and was succeeded by Vector. Both robots follow the same

principles and design, although Vector contains additional computational features such as speech recognition. They

are designed as a small truck, with an active forklift that can both play a functional roll (interact with and lift

up objects) and an expressive roll (raise and shake like they were its hands). It moves on two tank-like tracks,

which allows it to move forwards and backwards while turning and also to rotate in place. Its most distinguishing

feature is the expressive screen, which is used mostly to display its eyes, but can also display other information,

icons, animations, expressions, ir even be used as a game screen. All the expressions were carefully designed by

professional animators with previous experience in the movie industry, which endowed Cozmo and Vector with the

illusion of life, making them into some the most successful consumer robots for the home environment.

Buddy36 (2016), Blue Frog Robotics

Bluefrog Robotics presented Buddy, a small home companion robot aimed at various tasks such as home assistance,

elder care, entertainment and edutainment [156]. It has a mobile base with three wheels and sensors that allows it to

perform house mapping, localization and collision and obstacle avoidance. Its head is supported on a pan-tilt neck

and contains a screen where it displays and expressive face or applications and games.

Adelino37 (2017), Tiago Ribeiro, INESC-ID

The Adelino robot was created by ourselves in the context of this thesis. It is a craft, 5-DoF articulated desktop robot

with a simple face containing only two LEDs that can blink or change in brightness. Its design was inspired both by

an animated snake, and from lines of action, an element that is intrinsically part of character animation. It has been

used as autonomously for games and entertainment [157], which we will further describe in Sections 7.3 and 7.4.

As an articulated structure, similar to an industrial manipulator, it requires inverse kinematics that can solve both for

orientational and full-body postural targets in order to convey motivation, intention and emotional expression to its

users. Given that it was developed in the context of this thesis, it will be further described in detail in Section 7.2.1.

34http://milab.idc.ac.il/teaching/projects/kip (accessed January 12, 2019)
35https://anki.com (accessed January 12, 2019)
36http://www.bluefrogrobotics.com/robot (accessed January 12, 2019)
37https://tiagoribeiro.pt (accessed January 12, 2019)
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YOLO38 (2017), Patrícia Alves-Oliveira, Cornell University

The YOLO (Your Own Living Object) is a minimal abstract robot designed for child-robot interaction [158, 159]. It

is aimed at stimulating creativity during play, and uses implicit interaction modalities such as motion and lights

to communicate with children. The lights can display different colours using various brightness levels to convey

emotional expressions and personality. Using its three omni-wheels it can also reactively and proactively interact

with children by navigating in any direction and by performing different navigation patterns at varying speeds.

Blossom39 (2018), Cornell University

The Blossom is an open-source desktop social robot that uses a tensile mechanical structure to perform smooth,

natural and safe movements, while being covered by handcrafted replaceable skins such as knitted or crocheted ones

[160]. Besides its unique and distinguishable craft appearance, its internal mechanisms, built using servo-controlled

strings and elastic bands, allow it to exhibit squash-and-stretch, and to perform a wide variety of natural movements

that to not appear to be mechanical. Additional custom appendages can be added to its head, which can also be

controlled using a servo. Its internal structure is built mostly out of laser-cut wood or acrylic.

CLOi40 (2018), LG Electronics

The LG Electronics company has released a series (or family) of CLOi robots, designed and built with various

purposes in mind [161]. This robot family includes a robot for the home, a lawn mower robot, a guide bot, a large

cleaning bot, a transporter bot (e.g. to carry luggage), a serve bot (e.g., butler), and a cart bot (e.g., for shopping),

each aiming at different application scenarios. All except the lawn mower and cleaner bot exhibit a display with

a minimalistic face, representing a minimal face that is used as a point of attention for users, to express gazing

direction, and various other facial expressions.

Walt41 (2018), Vrije Universiteit Brussels, Hasselt University, Melexis, Audi, Softkinetic, AMS Robotics,

Robovision

Walt is a social collaborative robot that that helps factory workers assemble cars [162]. It uses a screen to exhibit an

expressive face, icons or short animations. Its body is a concealed articulated structure that allows it to gaze around

at its co-workers.

Kiki42 (2019), Zoetic AI

The Kiki robot created by Zoetic AI is a small desktop robot [163]. It has a fixed torso base with a pan-tilt neck and

a head that resembles some animal with small ears such as a kitten or a fox. Its face is a screen with eyes that can

display a wide variety of expressions, and its AI is focused on delivering personality, affection and attachment.

38http://patricialvesoliveira.com (accessed January 12, 2019)
39http://guyhoffman.com/blossom-handcrafted-soft-social-robot (accessed January 12, 2019)
40http://www.lg.com/global/lg-thinq-appliances/cloi (accessed January 12, 2019)
41http://www.sulu.be/Walt (accessed January 12, 2019)
42https://www.kiki.ai (accessed January 12, 2019)
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Chapter 4

Robot Animation in Theory

4.1 The Principles of Robot Animation

In the context of social robotics, our understanding is that robot animation is not just about motion. It is about making

the robot seem alive, and to convey thought and motivation while also remaining autonomously and responsive.

And because robots are physical characters, users will want to interact with them. Therefore robot animation also

becomes a robot’s ability to engage in interaction with humans while conveying the illusion of life.

One of the major challenges of bringing concepts of character animation into Human-Robot Interaction (HRI)

is at the core of the typical animation process. While in other fields, animation is directed at a specific story-line,

timeline, and viewer (e.g. camera), in HRI the animation process must consider that the flow and timeline of the story

is driven by the interaction between users and the artificial intelligence (AI), and that the spacial dimension of the

interaction is also linked to the user’s own physical motion and placement. Robot animation becomes intrinsically

connected with its perception of the world and the user, given that it is not an absent character, blindly following

a timeline over and over again. This challenge is remarkable enough that character animation for robots can and

should be considered a new form of animation, which builds upon and extends the current concepts and practices of

both traditional and Computer-Graphics (CGI) animation and establishes a connection between these two fields and

the field of robotics and AI.

Various authors have previously moved towards the idea of robot animation, as a well specified field that could

even include its own principles of animation. Van Breemen initially defined animation of robots as ’The process

of computing how the robot should act such that it is believable and interactive’ [9]. He also showed how ’Slow

In/Out’ could be applied to robots, although he called it Merging Logic.

Wistort has also proposed some principles that should be taken in account when animating robots, that do

not accurately follow the ones from Disney [164]. His list of principles refer to ’Delivering on Expectations’,

’Squash and Stretch’, ’Overlapping/Follow through animation’ (although he refers to it as Secondary Action),

’Eyes’, ’Illusion of Thinking’ and ’Engagement’. We actually consider that ’Delivering on Expectations’ implies the

same as Disney’s ’Appeal’, ’Illusion of Thinking’ is related to ’Anticipation’ and ’Engagement’ refers to ’Staging’.

Furthermore it is discussable whether or not Eyes must be part of robots at all.

Takayama et al. have focused on the use of Anticipation, Engagement, Confidence and Timing to enhance the
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readability of a robot’s actions [31]. Once again, the authors refer to ’Engagement’, when in fact they do ’Staging’.

Indeed, ’Staging’ doesn’t sound like a correct term to use in robot animation, because for the first time, we are

having animated characters in real settings, and not on a set-up stage.

Mead and Mataric also addressed the principles of Staging, Exaggeration, Anticipation and Secondary Action

to improve the understanding of a robot’s indentions by children with autism [137]. For exaggeration, they were

inspired by a process used in the generation of caricatures by exaggeration of the difference from the mean.

More recently, Gielniak et al. have sucessfully developed an algorithm that creates exaggerated variants of a

motion in real-time by contrasting the motion signal, and demonstrated it applied to their SIMON robot [32].

Before we move on to define our principles of robot animation, we must first define robot animation. Most

animation principles and guidelines report on designing particular motions. In the context of social robotics, our

understanding is that robot animation is not just about motion. It is about making the robot seem alive, and to

convey thought and motivation while also remaining autonomous and responsive. And because robots are physical

characters, users will want to interact with them and therefore robot animation also becomes a robot’s ability.

We therefore complement Van Breemen’s definition by stating that robot animation consists of all the processes

that give a robot the ability of expressing identity, emotion and intention during autonomous interaction with human

users.

It is important to emphasize the word autonomous, as we don’t consider robot animation to be solely the design

of expressive motion for robots that can be faithfully played back. Instead it is about creating techniques, systems

and interfaces that allow animation artists to program how the motion will be generated, shaped and composed

throughout an interaction, based on the behaviours that are computed by the AI.

A general list of Principles of Robot Animation should also address principles related to human-robot interaction.

In our list however, we refrain from deepening such topic that is already subject of intensive study [165, 166, 167,

168]. Instead, we have looked into principles and practices of animators throughout several decades, and analysed

how the scientific community can and has been trying to merge them into robot animation.

We have noted that not all principles of traditional animation can apply to robots, and that in some cases, robots

actually reveal other issues that had not initially existed in traditional animation. Most of these differences are found

due to the fact that robots a) interact with people b) in the real, physical world.

The following sections reflect our understanding of how the Principles of Robot Animation can be aligned.

Although they are stated towards robots, the figures presented show an animated human skeleton, as an easier

depiction and explanation of use. Each principle is also demonstrated on the EMYS and the NAO robots in an

online video1, which can be watched as a complement to provide further clarification. The video first demonstrates

each principle using the same humanoid character presented in this section, and then follows with a demonstration

of each principle first using the NAO robot, and then using the EMYS robot.

4.1.1 Squash and Stretch

For robots to use this principle, it sounds like the design of the robot must include physical squashing and stretching

components. However, besides relying on the design [96, 169], we can also create a squash and stretch effect by

using poses and body movement.

1https://vimeo.com/49122495 (accessed January 12, 2019)
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In Figure 4.1 we can see how flexing arms and legs while crouching gives a totally different impression on the

character. Following the rule of constant volume, if the character is becoming shorter in height, it should become

larger in length, and a humanoid robot can perform that by correctly bending its arms and legs. Figure 4.2 presents a

snapshot from the video1 illustrating how this principle looks like on the NAO robot.

Figure 4.1: An animation sequence denoting the principle of Squash & Stretch. The red marks represent the
trajectory of the most relevant joints.

Figure 4.2: The principle of Squash & Stretch shown on the NAO robot.

4.1.2 Anticipation

Anticipating movements and actions helps viewers and users to understand what a character is going to do. That

anticipation helps the user to interpret the character or robot in a more natural and pleasing way [31].

It is common for anticipation to be expressed by a shorter movement that reflects the opposite of the action that

the character is going to perform. A character that is going to kick a ball, will first pull back the kicking leg; in the

same sense, a character that is going to punch another one will first pull back its body and arm. A service robot that

shares a domestic or work environment with people can incorporate anticipation to mark, for example, that it is

going to start to move, and in which direction, e.g., before picking up an object, or pushing a button.
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Figure 4.3: An animation sequence denoting the principle of Anticipation. The red marks represent the trajectory of
the most relevant joints.

In Figure 4.3 we can see how a humanoid character that is going to crouch may first slightly stretch upwards.

The concept can be better explained by looking at a simple animation curve example. Figure 4.4 shows two

animation curves for a 90 degrees rotation of an object. On the left we see a simple animation curve, and at the start

and end keyframes we see the tangent of the curve at that point.

On the right we have the same keyframes, but the tangent of the initial keyframe has been changed. Just by

adjusting this tangent we have made the object start by slightly rotating 10 degrees backwards before performing

the mentioned 90 degrees rotation, thus creating an anticipation effect.

4.1.3 Intention

This principle was formerly known as Staging in the traditional principles of animation. In robots, staging results

in several things. First, it notes that sound and lights can carefully be used to direct the users’ attention to what it

is trying to communicate. Second, if a robot is interested in, for example, picking up an object, it can show that

immediately by facing such object [31]. In either cases, the key here is showing the intention of the robot.

We can see in Figure 4.5 a simple idea of a humanoid character that is crouching over a teapot to eventually pick

it up. The character immediately looks at the teapot, so users know it is interested in it, and eventually guess that it

is going to pick it up, much before the action happens.

Figure 4.4: Animation curves demonstrating anticipation. The left curve does not have anticipation; The right curve
does.
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That connects Intention with Anticipation; the difference is that while Anticipation should give clues about

what the robot is going to do immediately, Intention should tell users about the purpose of all that he is doing, as a

pre-action, before the actual action starts. In a crouch-and-pick-up situation, for example, the robot will perform

three actions - crouch, pick-up and stand. We should see Anticipation for each of these actions. The Intention,

however, should reflect the overall of what the character is thinking - it will start looking at the object even before

crouching, and will start looking at the destination to where it will take the object even before starting to turn

towards that direction.

Figure 4.5: An animation sequence denoting the principle of Intention. The red marks represent the trajectory of the
most relevant joints.

4.1.4 Animated, Procedural and Ad-hoc Action

This principle was adapted from the Straight-Ahead and Pose-to-Pose action and has strong technical implications

on the animation system development. It originally talks about the method used by the animator while developing

the animation. Straight-ahead animation is used when the animator knows what he wants to do but has not yet

foreseen the full sequence, so he starts on the first frame and goes on sequentially animating until the last one. In

pose-to-pose, the animator has pre-planned the animation and timing, so he knows exactly how the character should

start and end, and through which poses it should go through.

In robots, this marks in the difference between playing a previously animated sequence, a procedural sequence,

or an ad-hoc sequence. As a principle of robot animation, it results in a balance between expressivity, naturalness

and responsiveness.

A previously animated sequence is self-explanatory. It was carefully crafted by an animator using animation

software, and saved to a file in order to be played-back later on. That makes it the most common type of motion

to be considered today in robot animation. However it suffers from a lack of interactivity, as the trajectories are

played-back faithfully regardless of the state of the interaction. The motion is procedural when it is generated

and composed from a set of pre-configured motion generators (such as sine-waves). On the other hand, it is

ad-hoc if it is fully generated in real-time, using a more sophisticated motion-planner to generate the trajectory (e.g.

obstacle-avoidance; pick-and-place task). We can say that playing an animation sequence that has previously been

designed by an animator is a pose-to-pose kind of animation, while, for example, gaze-tracking a person’s face by

use of vision, or picking up an arbitrary object would be straight-ahead action.
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A pose-to-pose motion can also contain anchor points at specific points of its trajectory (e.g. marking the beat

of a gesture), so that the motion may be warped in the time-domain to allow synchronization between multiple

motions. Those anchor-points would stand as if they were poses, or key-frames in animation terms. The concept of

pose-to-pose can also become ambiguous in some case, such as in multi-modal synchronization, where, e.g. an

ad-hoc gaze and an animated gesture should meet together at some point in time using anchor-points that define the

meeting point for each of them. In that case, the straight-ahead action, planned ad-hoc, can result in an animated

sequence generated in real-time, and containing anchors placed by the planner. From there it can be used as if it was

a pose-to-pose motion to allow both motions to meet.

It currently sounds certain that the best and most expressive animations we achieve with a robot are still going

to be pre-animated. However the message here is that these different types of animation methods imply their own

differences in the robotic animation system, and that such system should be developed to support them.

Figure 4.6: An animation sequence denoting the principles of Pre-animated and Ad-hoc Action. The red marks
represent the trajectory of the most relevant joints.

In Figure 4.6 we can see on top a character performing a pre-animated and carefully designed animation, while

in the bottom it is instantaneously reacting to gravity which made the teapot fall, and as such is performing an

ad-hoc, straight-ahead animation.

While performing ad-hoc action, like reacting immediately to something, it might not be so important, in some

cases, to guarantee principles of animation - if someone drops a cup, it would be preferable to have to robot grab

it before it hits the ground, instead of planning on how to do it in a pretty way and then fail to grab it. In another

case, if a robot needs to abruptly avoid physical harm to a human, it is always preferable that the robot succeeds in

whatever manner it can. An ad-hoc motion planner therefore is likely to not contain many rules about animation

principles, but act more towards functional goals (see the "Functional vs. Expressive Motion" section in [31]).

4.1.5 Slow In and Slow Out

For robot animation, Slow In and Out motion may me implemented within software in two different modalities:

interpolation or motion filtering.

The former can be applied when the motion is either pre-animated, or fully planned before execution, so that
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the system has the full description of the trajectory points. By tweaking the tangent type of the interpolation of

the animation curve, it is possible to create accelerating and slowing down effects. By using a slow in and slow

out tangent, the interpolation rate will slow down when approaching or leaving a key-frame. This means that in

order to keep timing unchanged, the rate of interpolation will have to accelerate towards the midpoint between

two key-frames. Van Breemen called this Merging Logic and showed how it could be applied to the iCat [9]. In

alternative, when the motion is generated ad-hoc, a feed-forward motion filter can be used to saturate the velocity,

the acceleration and/or the jerk of the motion.

A careful inspection of the red trajectories in Figure 4.7 will show us the difference between the top animation

and the bottom animation. Each red dot represents an individual frame of the interpolated animation, using a fixed

time-step. We can see that in the bottom animation the spacing between the frames changes. It gathers more frames

near the key-poses, and less between them. This causes the animation to have more frames on those poses, thus

making it slow down while changing direction. Between two key poses the animation accelerates because the

interpolation generated less frames there.

This is more noticeable if we look at the animation curves. Figure 4.8 shows a very simple rotation without

Slow-In / Out (left) and with (right). In the left image we used linear tangents for the interpolation method, while in

the right we used smooth spline tangents.

We can see that with a linear interpolation, the curve looks straight, meaning that the velocity is constant during

the whole movement. By using smooth tangents the movement both starts, stops and changes direction with some

acceleration, which makes it look smoother.

Figure 4.7: An animation sequence denoting the principle of Slow In/Out. The red marks represent the trajectory
of the most relevant joints. Notice how more frames are placed at the points of the trajectory where the motion
changes in direction, in particular within the triangular-shaped portion. More spacing between points, using a fixed
time-step, yields a faster motion.
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Figure 4.8: Animation curves demonstrating Slow In and Slow-Out. The left curve does not have Slow In / Out;
The right curve does.

4.1.6 Arcs

Taking as example a character looking to the left and the right. It shouldn’t just perform a horizontal movement, but

also some vertical movement, so that its head will be pointing slightly upwards or downwards while facing straight

ahead. We can see that illustrated in Figure 4.9.

This principle is easy to use in pre-animated motion. However, in order to include it in an animation system, we

would need to be able to know in which direction the arcs should be computed, and how wide the angle should be.

If we have that information, then the interpolation process can be tweaked to slightly bend the trajectory towards

that direction, whenever it is too straight.

What actually happens with robots is that depending on the embodiment, it might actually perform the arcs

almost automatically. Taking as example a humanoid robot, when we create gestures for the arms, they will most

likely contain arcs, due to the fact that the robot’s arms are rigid, and as such, in order for the them to move around,

the intrinsic mechanics will lead the hands to perform arched trajectories. In traditional animation this principle was

extremely relevant as the mechanics of the characters were not rigidly enforced as they are in robots. Arcs still pose

as an important principle to be considered in robot animation, both for pre-animated motions and also as a rule in

expressive motion planners.

Figure 4.10 shows a character gazing sideways. The yellow cone represents the gazing direction at each frame.

The red curve illustrates the motion trajectory on the panning DoF (horizontally) and the Pitch DoF (vertically).

On the top motion, no movement is performed on the Pitch joint (straight line). On the bottom motion, instead of

performing only Yaw movement while looking around, the head also changes its Pitch between each keyframe of

the Yaw movement.

4.1.7 Exaggeration

Exaggeration can be used to emphasize movements, expressions or actions, making them more noticeable and

convincing. As such, it can also make robots seem more like actual characters and not just machines.

Although there are several levels of exaggeration, for robots it is interesting to look at exaggeration of actual

48



Figure 4.9: An animation sequence denoting the principle of Arcs. The red marks represent the trajectory of the
most relevant joints.

Figure 4.10: Animation curves demonstrating Arcs. The blue curve is the Panning DoF, rotating from the rest pose,
to its left (60 degrees) and then to its right (-60 degrees), and then back to rest. During this motion, the Pitch joint
(red curve) slightly waves between those key-frames.
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movements. It is actually a feature that can be implemented in animation systems by contrasting the motion signal

[32].

Figure 4.11 shows not only an amplification of the most relevant features of an animation, but also an added

feature - an ’anticipation’ backward step. This is meant to show that exaggeration can consist of more then just

contrasting the signal, and that by exaggerating the anticipation we can also make the actual action seem more

powerful. Because this kind of practice may endanger the robot’s surroundings and users if not correctly planned, it

is recommended only within pre-animated motion, or for performance and entertainment robots in which the robot’s

surroundings and mechanical reach are guaranteed to be safe.

Figure 4.12 presents a snapshot from the video1 illustrating how this principle looks like on the NAO robot,

while Figure 4.13 show the same for the EMYS robot.

Figure 4.11: An animation sequence denoting the principle of Exaggeration. The red marks represent the trajectory
of the most relevant joints.

Figure 4.12: The principle of Exaggeration exemplified on the NAO robot.
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Figure 4.13: The principle of Exaggeration exemplified on the EMYS robot.

4.1.8 Secondary Action and Idle Behavior

During a conversation, people often scratch some part of their bodies, look away or adjust their hair. In Figure 4.14

we can see a character that is crouching to approach the teapot, and in the meanwhile scratches its gluteus. Using

secondary action in robots will help to reinforce their personality, and the illusion of their life.

A character should not stand stiff and still, but should contain some kind of Idle motion, also known as keep-alive.

Idle motion in robots can be implemented in a very simplistic manner. Making them blink their eyes once and a

while, or adding a soft, sinusoidal motion to the body to simulate breathing (lat. anima) contribute strongly to the

illusion of life.

In the case of facial idle behaviour such as eye-blinking, during a dramatic facial expression these will often go

unnoticed or may even disrupt the intended emotion. It is better to perform them at the beginning or end of such

expressions, rather than during. Similarly, blinking also works better if performed before and between gaze-shifts.

Figure 4.14: An animation sequence denoting the principle of Secondary Action. The red marks represent the
trajectory of the most relevant joints.

4.1.9 Asymmetry

This principle was derived from the traditional principle of Solid Drawing. Although the traditional principle seemed

not to relate with robots, it actually states some rules to follow on the posing of characters.

It states that a character should neither stand stiff and still, nor does it stand symmetrically. We generally put

more weight in one leg than on the other, and shift the weight from one leg to the other. It also suggests the need for

the idle behaviour, and how it should be designed.
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The concept of asymmetry stands both for movement, for poses and even for facial expression. The only case in

which we want symmetry is when we actually want to convey the feeling of stiffness.

Figure 4.15 shows a character portraying another Principle - Idle Behaviour, while also standing asymmetrically.

This Idle Behaviour is performed by the simulation of breathing and by slightly waving its arms like if they were

mere pendulums.

Figure 4.15: An animation sequence denoting the principles of Asymmetry and Idle Behaviour. The red marks
represent the trajectory of the most relevant joints.

4.1.10 Expectation

This principle was adapted from the original Appeal. If we want a viewer or user to love a character, then it should

be beautiful and gentle. If we are creating an authoritative robot, it should have more dense and stiff movements.

Even if one wants to make viewers and users feel pity for a character (such as an anti-hero), then the character’s

motion and behaviour should generate that feeling, through clumsy and embarrassing behaviours.

Figure 4.16 shows two characters performing the same kind of behaviour, but one of them is performing as a

formal character like a butler, while the other is performing as a clumsy character like an anti-hero. In this case

the visual appearance of the character was discarded. However, if we had a robotic butler, we would expect him to

behave and move formally, and not clumsy.

The expectation of the robot drives a lot of the way users interpret its expression. It relates to making the

character understandable, because if users expect the robot to do something that it doesn’t (or does something that

they are not expecting) they fill fail to understand what they are seeing.

Wistort refers to Appeal as ’Delivering on Expectations’ [164], and his arguments have inspired us to agree. He

considers that the design and behaviour of a robot should meet, so if it is a robotic dog, then it should bark and wag

its tail. But if it is not able to do that, then maybe it should not be a dog. The Pleo robot2 for example, was designed

to be a toy robot for children. So the design of it as a dinosaur works very good, as it does not cause any specific

expectation in people - as people do not know any living dinosaurs, and as such, they don’t know if Pleo should be

able to bark or fetch, so they don’t expectation him to be able to do any of that.

4.1.11 Timing

Timing can help the users to perceive the physical world to which the robot belongs. If the movement is too slow,

the robot will seem like it is walking on the moon.

However, timing can also be used as an expression of engagement. Some studies have revealed a correlation

between acceleration and perceived arousal. A fast motion often suggests that a character is active and engaged on

2www.pleoworld.com (accessed January 12, 2019)
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Figure 4.16: An animation sequence denoting the principle of Expectation. The red marks represent the trajectory
of the most relevant joints. Notice how the clumsy version balances the teapot around instead of holding it straight,
and waves around its left ar instead of holding it closer to its body, delivering a feeling of discourtesy.

what it’s doing [95, 31].

Being able to scale the timing is useful to be able to express different things using the same animation, just by

making it play slower or faster. In Figure 4.17 we get a sense that the top character is not engaged as much as the

lower character, because we see it taking longer to perform the action. It may even feel like the character is bored

with the task. In the fast timing case we are showing less frames of the same animation, to give the impression of it

being performed faster. In reality, that would be the result, as a faster paced animation would require less frames to

be accomplished using a fixed time-step.

Figure 4.17: An animation sequence denoting the principle of Timing. The red marks represent the trajectory of the
most relevant joints.

As a principle of robot animation, timing is something that should be carefully addressed when synthesizing

motion e.g. using a motion-planner. Such synthesizer will typically solve for a trajectory that meets certain

world-space constraints, while also complying with certain time-domain constraints such as the kinematic limits that

the robot is allowed to perform. In many cases, a very conservative policy is chosen, i.e., the planner is typically

instructed to move the robot very slowly in order to keep as far away as possible from its kinematic limits. However,

such a rule may be adding some level of unwanted expressiveness to the motion. We therefore argue that when

using such planners it is important to consider, within the safety boundaries of the robot’s kinematic limits, ways of

generating trajectories that can exploit the time-domain in a more expressive way.
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4.1.12 Follow-Through and Overlapping Action

This principle works like an opposite of anticipation. After an action, there is some kind of reaction - the character

should not stop abruptly.

We should start by distinguishing these two concepts here. Follow-through animation is generally associated

with inertia caused by the character’s movement. An example of follow-through is when a character punches another

one, and the punching arm doesn’t stop immediately, but instead, even after the hit, both body and arm continue to

move a bit due to inertia (unless it is punching an ’iron giant’). Overlapping is an indirect reaction caused by the

character’s action. An example of overlapping is for example the movement of hair and clothes which follow and

overlap the movement of the body.

Using follow-through with robots requires some precaution because we do not want the inertial follow-through

to hurt a human or damage any other surroundings. Follow-through might also cause a robot to loose balance, so it

seems somewhat undesirable. Many robot systems actually will try to defend themselves against the follow-through

caused by its own movements, so why would we want it?

In first instance, we consider that follow-through should better not be used in most robots, especially for the first

reason we mentioned (human and environment safety). However, when it can be included at a very controlled level,

namely on pre-animated motion, it might be useful to help mark the end of an action, and as such, to help distinguish

between successive actions. Unlike anticipation, however follow-through is much more likely to be perceived

by humans as dangerous, because it can give the impression that the robot slightly lost control over its body and

strength. We would therefore imperatively refrain from using it on any application for which the perception of safety

is highest, such as in health-care or assistive robotics.

Overlapping animation depends mostly on the robot’s embodiment and aesthetics. It might serve as a tip for

robot design, by including fur, hair or cloth on some parts of the robot, that can help to emphasize the movement

[169]. As such, we find no need to include overlapping animation into the animation process of robots per se,

because whatever overlapping parts that the robot might have, should be ’animated’ by natural physics. Therefore

if one wishes to use it, it should be considered as an animation effect that is drawn by the design of the robot’s

embodiment, and thus should be developed initially at the robot design stage.

4.2 Dimensions of Kinematronics

We introduce here the concept of Kinematronics, which refers to all the high-level mechanical and electronic systems

that allow a robot to portray animate expression either kinematically (through physical movement) or electronically

(through screens, lights and sounds). The term is derived from kinematics, which would refer only to the mechanical,

physical components, and is composed with the concept of "electronics" to include the non-mechanical forms of

expression.

Robots may take many forms and shapes, and provide various means of both interacting with the world, and of

conveying expressivity. We start by defining an expressive Degree of Freedom (DoF) (degree of freedom), further

referred to merely as a DoF, to be a one dimensional expressive channel that can be individually controlled through

a given range or set of values. Each expressive DoF in a robot can be controlled individually during interaction in

order to convey a significant and intentional expression. Based on the set and types of DoFs a robot has, and their
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individual and aggregate role on providing expressivity, we have defined four different dimensions of kinematronics:

Stationary Expression refers to motion performed by DoFs that are purely mechanical and that do not yield any

intentional movement in space. Examples of such expressions are facial and postural expressions. The term

stationary is chosen because these are mostly found in stationary robots such as desk-top robots, which do

not move around by themselves. We do include full-body postures into this type of expression, as long as they

are not meant to move the robot in space. An example of that would be a standing humanoid robot, which

enacts a full-body emotive posture. While its legs could be used for walking, i.e., for spatial function and

expression, when they are used in non-locomotive expressions we do consider them to be acting as part of the

stationary expression dimension.

Spatial Expression refers to motion that moves the robot around in space. These are typically accomplished by

either wheels or legs, but can also be performed by rotors, as in a quadcopter drone. Note that besides walking,

a legged robot, for example, may also have the ability to perform controlled movements in height, allowing it

to e.g. climb up stairs, jump, or crouch. Comparing to the the stationary expression dimension, the accounted

number of DoFs may seem lees intuitive than for the other dimensions, as it does not related to the number

of legs or wheels that the robot has, nor to their articular structure. A legged or wheeled robot can move in

1D, 2D or 3D, while also being able to perform motion that rotates about a given set of axes. For example,

a 1D-capable robot could be able to move either back and forth, or side to side. A 2D-capable robot could

move back-and-forth, and additionally either rotate left and right (yaw), or strafe to the sides, or travel up and

down. A 3D-capable robot can typically move in 2D plus rotate about the vertical axis (Yaw). This dimension

therefore accounts for the total number of axes about which the robot can perform spatial movement, be them

translational or rotational axes. It can thus account for zero to 6 DoFs, given the robot’s ability to travel along

its local X, Y or Z axes, or to perform yaw, pitch or roll movements. Please refer to figure 4.18 for any further

clarifications.

Display Expression refers to expressions portrayed through some form of electronic light display. This can

include simple monochrome LEDs, multi-color/RGB LEDs, a monochrome (LCD) screen or an RGB screen.

Ultimately it can also include some kind of light projection system. If no layer of expressive control is defined

for the display, we consider each individually controlled LED to be one DoF (even if it is multi-colored),

and each individual screen/projector to also be one DoF (regardless of its pixel resolution). However, if the

LEDs are disposed in a particular expressive way, such that they all relate to the same expressive channel,

that should always be controlled as a whole (e.g. each of NAO’s eyes is composed of 8 LEDs), then we

consider them all to be a single, aggregated DoF. Similarly, of a robot necessarily includes a particular type of

expressive display application, such as a face, then we consider the display element to have as many DoFs

as that application. Note that in a case where e.g. the application allows to individually control the opening

of each eye, that would amount to 2 DoFs. If one can control the opening and frowning of each eye, then it

has 4 DoFs. If however the application has only a set of pre-defined expression, without any further control,

then we consider it to have only one DoF, which corresponds to the discrete list of expressions. This type

of specification for display expressions allows us to abstract from the technical aspect of how the displays

and lights are physically implemented, and instead specify the type and amount of expressive signals can be
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Figure 4.18: The Spatial Expression of Kinematronics. top-left: movement in a single direction represents 1 DoF.
top-right: movement in one translational direction plus one rotational direction (in this case, Yaw), amounts to
2 DoFs. bottom-left: movement in two translational directions also amount to 2 DoFs. bottom-right: the most
complex 6-DoF example, in which translational movement can be performed in 3D, and rotational movement can
also be performed along the three rotation axes. Using intrinsic rotations is recommended, i.e., the coordinate system
for the rotations is attached to the moving body and therefore changes after each elemental rotation. Elemental
intrinsic rotations are performed in the order Yaw-Pitch-Roll.

individually portrayed through it.

Audible Expression refers to any audible form of intentional expressivity that a robot may have, from simple

beeps, to 4 or 8-bit audio effects (sampled or generated), or a more sophisticated speech system. Speech

may either be pre-recorded (from humans), pre-synthesized, or synthesized during interaction using a TTS.

Outputting speech will typically require a more modern 16- or even 24-bit audio output system. Similarly to

the case of the display expression level, we consider that each individual audio player/controller accounts to

one DoF. That means that the speech system is one DoF, and any other audio-output adds as many DoFs as

the number of audio signals it can control and play simultaneously.

In Figure 4.19 we can see examples of how some several robots would be placed within the kinematronics

dimensions. In particular, taking the humanoid NAO H253 robot as example, we see it contains at least 25 stationary

DoFs that can be used for expression. Although its legs may be used for locomotion, there are many cases in which

they are used purely for expressive postures. Regarding spacial expression, NAO is capable of 3D motion, given

that it can walk forward and backward, strafe sideways, and also perform yaw rotation. As to display expression,

and while in total, the robot has many individual LEDs, we consider the amount of display-expression DoFs to be 5:

one for each eye and ear and one on the head. Finally, for audible expression, NAO is capable of both talking and

playing audio files. While it physically contains two speakers (one on each ear), what matters expressively is that its

audio-player typically allows to play only one file/sound at a time. Be it music, expressive or warning sounds, they

will all be played through the same controller. Therefore, it contains 2 audible-expression DoFs: the TTS, and the

3http://doc.aldebaran.com/2-5/family/nao_h25/index_h25.html (accessed January 12, 2019)
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Figure 4.19: The four kinematronics dimensions, along with an illustration of how several existing robots would be
represented.

audio-player. The figure also compares the NAO T144, Pepper5, Adelino6, Cozmo7, and the latest version of the

EMYS8 robot.

It is extremely important to note that these dimensions do not portray how expressive a robot is or can be. Due

to design factors, a robot with e.g. few static expression DoFs such as the EMYS or the Adelino, may be considered

more expressive than a high-DoF robot such as the NAO. The purpose of these dimensions are solely to enumerate

and provide a specification for the various expressive channels that can be found in robots, and does not provide any

hints for comparing the overall expressiveness between them.

4.3 The Nutty Workflow for Robot Animation

In order to implement social robots that are based on the concept and processes of robot animation, one must

properly introduce these into the design and development workflow. In this section we introduce general concepts

on how a system architecture should be laid out and used, which is presented as the workflow for the design and

development process. The workflow presented here are deeply inspired on the work developed previously with

the Nutty Tracks animation engine (Section 6.1), which was used as a sandbox to explore and develop new robot

animation techniques for interactive applications [121, 42, 157]. As such, we refer to these as the Nutty Workflow

and the Nutty Pipeline.

The Nutty Workflow presented here aims specifically at allowing the type of animation capabilities mentioned

throughout this thesis. As such, it should not stand as a general workflows for the whole field of HRI and social

robotics. Instead, it presents the elements that should (or are suggested to) be present to achieve highly animate

social robots, that exhibit the illusion of life, and whose design and development was carried out with animation

theories and practices in mind. Further modifications should be carried out in order to accommodate any other

4http://doc.aldebaran.com/2-1/family/nao_t14/index_t14.html (accessed January 12, 2019)
5http://doc.aldebaran.com/2-5/home_pepper.html (accessed January 12, 2019)
6https://vimeo.com/232300140 (accessed January 12, 2019)
7https://www.anki.com/en-us/cozmo (accessed January 12, 2019)
8https://emys.co/ (accessed January 12, 2019)
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requirements.

4.3.1 Concept Design

First, if developing a new robot, its concept design must carefully consider all the expressive capabilities and the

kinematronic dimensions needed. We will not deeply explore this concept there, as it is also subject of study in

other works. In particular we refer to the work by Hoffman & Ju which explores the initial stage of designing a

robot with its expressive movement in mind [96]. This stage should include both hand-drawn concepts, along with

3D animated concepts, and even pre-visualization prototypes that allow the designers and developers to virtually

simulate how the robot would behave during specific use cases of interaction with humans. Such pre-vizualization

can be developed using game-development engines such as the Unity9 or the Unreal Engine10. This initial concept

stage will help to inform developers both about the aesthetical design of the robot, on its kinematic structure, such

as number of joints, and range of motion, and also about the use of display expression elements. Sound design

[170] can also be explored at this stage, and can be used both on rendered 3D animations of the robots, and on the

interactive pre-vizualization. If the robot will be performing speech, it is also a good idea to pre-visualize how

it will look with the robot at this stage, as that may seriously impact the design of any facial features that should

become animated while the robot is speaking.

4.3.2 The Nutty Workflow

Figure 4.20 illustrates the Nutty Workflow. We split the workflow in two main areas: the creative development

and the technical development. The idea is that both are intrinsically part of the model and should holistically be

considered as a whole. In the creative development area, we find most of the behaviour-authoring related to the

Figure 4.20: The Nutty robot animation workflow.

9https://unity.com (accessed January 12, 2019)
10https://unrealengine.com (accessed January 12, 2019)
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social robot, including the development of pre-designed animations and postures, sound design, dialogues and

composite multi-modal behaviours, which allow to sequence and synchronously play back a set of e.g. animations

and postures, along with dialogue and sound effects. This area is expected to include non-technical developers such

as animators or psychologists. As such it is important to carefully consider the type of tools used, to make sure they

can produce properly specified assets that can be used further in the software. We will addressed and elaborate on

such tools later in section 5.3.

The technical development area consists of the software architecture that is typically expected for a social robot.

That includes, on the hardware part, both the Robot and Sensors, along with the lower-level Robot Software that

controls and communicates with both. Note that while the robot will likely contain sensors already, other external

sensors may be used, such as external cameras (RGB or RGB-D) for object and user tracking and recognition, or

even for localization of the robot. As such it is useful to include a dedicated Perception Engine that can handle

the input signals and translate them to symbolic, meaningful inputs for the Control Software and the Animation

Engine. The Control Software is illustrated as a single component, but may be split into various sub-components

depending on the application. This should handle the actual application-domain knowledge and control, which

allows the robot to perform a given task or application. Alternatively, it can consist of remote control tools, such as

a Wizard-of-Oz, or a tele-operation panel. The output of Control Software should be discrete and well-specified

commands, given to either the robot software directly (e.g. shutdown, reset, etc..), or to the Animation Engine.

Because the focus of this workflow is robot animation, we do place the Animation Engine as a separate

component. This engine should be able to handle all the commands that control the various kinematronic abilities of

the robot. Depending on the aim of the application, it may have various levels of complexity. There are explained

further in Section 5.2.

Note that the animation engine has the ability of running Animation Programs. These programs differ from a

static animation file, in that they contain a sequence of rules that allow the generation, transitioning and blending

of various expressive modalities, along with the computation of ad-hoc motion such as the ones that are produced

through inverse kinematics or path planning (Section 5.2). While a more traditional architecture would delegate

such techniques to the actual robot software, we claim that including all motion control in the animation engine

allows to seamlessly use Pre-Viz Software in place of the real robot during much of the development. In particular,

such Pre-Viz aims at allowing the creative developers to work on the robot’s behaviour and expressivity, in an

interactive way, in order to ensure that the final behaviour of the robot during an interaction will match the intended,

authored behaviour, as close as possible.
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Chapter 5

Robot Animation in Practice

5.1 Building Autonomous Socially Expressive Robots using SERA

Throughout our history of creating various human-robot interaction (HRI) applications, for different purposes and

featuring different robots, we have designed and developed multiple interaction scenarios and software tools to aid

us in augmenting both the quality of the interaction and richness of expressivity of the different robots used. Figure

5.1 provides a high-level illustration of how most of these scenarios have been built.

Figure 5.1: The composition of our typical HRI scenarios.

In order to streamline and promote the design and development of reusable components, we have created SERA,

which is an architecture and set of tools for creating autonomous socially expressive robots (ASERs) [42]. The

SERA ecosystem was created following on the SAIBA model which is very popular within the virtual agents

community [37]. Figure 5.2 shows the original SAIBA model, while Figure 5.3 illustrates the general components

of the SERA model. Colouring of the components establishes a relationship between both figures. In overall, our

architecture aims at providing a reusable structure and collection of modules, that can work for different scenario

applications and robots.

The Intention Planning/Decision Making (DM) layer contains components that perform the decision making
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Figure 5.2: The SAIBA model for virtual agents [37].

Figure 5.3: The SERA model. In compliance with SAIBA, the AI is the Intention Planning level; BM is the Behavior
Planning level; All the others (including User Perception) are the Realization level.

and is mostly scenario-specific, as it models the high-level knowledge intrinsic to the interaction scenario or

application.

The Behaviour Planning/Manager (BM) layer builds high-level behaviours based on intention-directed in-

structions generated at the higher level. These behaviours can be slightly generalized, as different characters and

scenarios may share some common behaviour mechanisms.

We generally decompose the realization level into a Text-to-Speech (TTS) engine, realization of animation, and

some multimedia application through which the user can interact with the system and receive feedback from it.

User Perception has not been traditionally included in the SAIBA model. However, on previous work adapting

that model to HRI, we have include a transversal Perception layer that runs across all other levels [171], providing

both high and low-level representations of the interaction environment. Our experience has shown it to be useful

both to provide high-level perception of the user such as facial recognition, emotional state recognition or gestural

actions, to the AI, and also lower-level perceptions such as simple face detection or sound direction estimation, to

be used both for the generation of some types of behaviours at the DM and BM components (e.g. rapport), and for

adaptation of behaviour at both the BM and Animation components (e.g., tracking a user’s face). Actions selected

by the user in the multimedia application can also be interpreted by the AI as perception of user actions (e.g. clicked

a button, selected an option).

In particular, when dealing with robots, a component such as the Animation Engine tends to be developed

specifically for the robots’ motor control systems, as these differ greatly from robot to robot. This specificity of the

realization layer for robots thus poses as a problem in abstracting high-level behaviours in a way that scenario- and

behaviour- components can be used across various robotic platforms and interactive applications. We addressed this

problem by creating the Nutty Tracks animation engine, further described in Section 6.1.

We will further refer to a SERA Character, or just a Character as a set of components that have been built and

are architecturally laid based on SERA, acting together in order to function as an ASER. Although a Character

could also be virtual, in the scope of this thesis we will not enforce such distinction unless it is required.
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It is important at this point to discuss how the Autonomous feature of the robot is given especially by the

components used for Decision Making. Throughout our development of full scenarios or Characters, it has been a

trend to follow a two- or three-stage iterative user-centred design. While the final result is an autonomous robot,

throughout its development, we may go through several milestone prototypes that are typically semi-autonomous

and partially tele-operated.

The following sections of this chapter start by presenting our ASER development methodology and then

some of the main tools that have been developed as part of SERA. Thalamus, presented in Section 5.1.2 is a

component integration framework which we have been using to allow all the modules and tools to easily connect

and communicate across multiple computers and operating systems. Skene (Section 5.1.3 is a Behaviour Manager

that connects with most of the other modules in a character. Nutty Tracks, in Section 6.1 is a symbolic animation

system that allows the ASER to mix all the different behaviour modalities generated during an interaction, and can

produce them for different embodiments and robots.

5.1.1 The SERA Development Methodology

Our methodology for developing autonomous socially expressive robots is generally composed of two or three

states. Figure 5.4 illustrates the complete three-stage methodology. Depending on the nature of the scenario and

its application, we can optionally skip some of the stages. Given, for example, an HRI application that is directed

to school children or elders, it is important to consider all the stages, and to include the experts (e.g. teachers,

caregivers) in the process. However for a typical HRI scenario aimed at entertainment, if would generally be

sufficient to start developing at Stage 2. Further simple, small-scale applications such as the student projects develop

during classes of their Masters degree courses. would most likely consider solely Stage 3. In such cases one must

also consider a different designation for some of the steps in Stage 3 (e.g. Refinement becomes actual Development).

Stage 1 - Mock-up Prototype

The first stage is generally considered when the application requires us to work alongside experts. In that case we

start by establishing the foundations of the interactive scenario and activity, as in what the target users will get from

it.
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Figure 5.4: The SERA-based multi-stage ASER development methodology that we have typically followed on
previous HRI scenarios.

In order to understand how humans typically address a given task or application, we can build a mock-up

prototype and use it to run a human-human (H-H) experiment. This mock-up prototype should look as close as

possible to the task or application that we are addressing, but without including any robot at all. For example, if

developing a robotic tutor for class rooms that is able to play a given game with children using a tablet or touch-table,

we may start by setting up such application, or application prototype on a table, and have children interact with it

accompanied by a peer or a teacher. That way we can analyse the H-H interaction that happens while the student is

playing the game, and collect the type of utterances and specifications for a gaze model that is appropriate to the

target application.

Stage 2 - Semi-Autonomous Prototype

The prototype developed in Stage 1 along with the data collected is used to inform Stage 2. We split this stage

between Interaction Design (ID), and Development, where ID can be performed by non-technical professionals

such as psychologists, animators or designers.

In this stage we develop a first set of behaviours for the robot, both verbal and non-verbal, through which it

should be able to interact with the target users in the target application. When the first Stage was not required,

the behaviours are developed either based on literature, on previous analysis or observation, or in some cases (e.g.

entertainment applications), they can be developed intuitively or in an artistic fashion. This is also where we develop
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most of the required perceptual components, and a nearly final version of the game or application that can also

be controlled by an external AI agent (and not only through direct user input). It is important to note that, when

using a robot to interact with users through an application running on a tablet or any other virtual device, those

virtual applications may have to be modified or developed in order to allow the AI agent to control it, e.g. by

adding commands that allow a button to be pressed or a message to be shown without the user having to interact

directly with the application. In many situations the robot may also take an active role in the activity, and as such, it

should be able to initiate it, terminate it, or perform actions on it just as if it was a real person interacting. This

type of remote control of the application must be carefully considered and designed so that the users understand

that it is the robot who is controlling the application. If the robot has hands, having it point at the application in

synchronization with the actions can help to convey this. In any case there should always be a visual highlight on the

screen whenever the robot is controlling the application or talking about it, so that the user knows where to look at.

This set of behaviours, perceptual capabilities and application are then evaluated using a remotely controlled

semi-autonomous prototype of the robot. Although this is typically referred to solely as a Wizard-of-Oz (WoZ)

setting [172], we stress the semi-autonomous factor of our WoZ practices. In a semi-autonomous WoZ, the Wizard

is used mostly to replace a higher-level Perception and Decision Making components. However the robot can run

most of the task and interaction autonomously, while the Wizard is provided with higher-level controls that guide

the behaviour selection or generation processes, based on what is observed by the Wizard throughout the interaction.

Performing an evaluation at this stage allows us to test and refine the robot’s verbal and non-verbal behaviour, and

its role within the interactive activity, before investing on making the system run autonomously.

At the end of this stage, the HRI system should be almost fully develop, in a way that we could just remove the

WoZ module and replace it by the final Perception and AI modules. In order for that final step to be seamless, it is

important to integrate the WoZ module just as if it was another component if the system. Therefore, if some kind of

messaging mechanism is used to communicate between modules, the WoZ module should already produce and

receive the same messages that the final Perception and AI modules are expected to produce, using the same API, so

that the final stage will require very few to no changes in its behaviour and code.

Stage 3 - Autonomous Prototype

This stage is about turning the previous prototype into an autonomously controlled one. At this point there should be

only some changes left to do regarding the robot’s verbal and non-verbal behaviour, and the interactive application.

In order to guarantee a proper interaction flow with the autonomous version, it is however expectable that the design

and use of some of these components may need to suffer some changes. It is also common to add more content to

the prototype at this stage, such as extra levels in a game, given that all the mechanisms required for the robot to

interact through it are already created and tested.

Developing the final Perception and AI modules is generally application-specific. Even when using the same

Perception sensors such as the Kinect or microphones, different applications may require different higher-level

perceptions of a task or of the user. As to the AI, depending on the goal and scope of the project, is may be created

as a simple rule-based system, or even include some for of machine learning.

An evolved version of the semi-autonomous WoZ, called restricted-perception WoZ, has been presented by

Sequeira et al., in which the Wizard monitored the interaction not through a video or audio feed, but through
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discrete symbolic messages that were generated by the Character’s actual perception modules [173]. Instead of

being presented with a live audio and video feed, the Wizard is presented with the discrete information that can

actually be collected through the sensors and the Perception module. An example of this is when the robot must

react the the user’s gazing direction. Because its Perception will have to identify whether the user is gazing, e.g.,

towards the robot, towards the task, or elsewhere, the Wizard should be presented only with this fact, given what

its sensors were able to perceive. This way the Wizard was presented with the realistically limited and imperfect

information that can be collected through the Character’s sensors, and was forced to perform decisions based on

those, instead of being allowed to perform based on a more natural observation from real-time audio and video,

through which the Wizard is able to discern the user and the environment in a way that the robot is not.

The main advantage of this type of setting is making it easier to create autonomous behaviours, based on the

data collected from the interactions of the previous Stage. If the Wizard’s selected actions are recorded based on the

discrete information that is produced by the real robot’s Perception, then it is possible to train the AI directly using

that data.

In this stage it is still crucial to have the Interaction Designers working closely with the Developers, in order

to guarantee that the expected interaction is achievable in an autonomous fashion, while finding solutions for

limitations that do not sabotage the interaction.

5.1.2 Thalamus

Thalamus is a high-level integration framework aimed especially at developing interactive characters that interact

both through virtual and physical components. It was developed in C#/.NET to accommodate social robots into such

a framework, while remaining generic and flexible enough to also include virtual components such as multimedia

applications or video games running on a touch table [41]. It follows on the concepts of asynchronous messaging

middle-ware and on well-defined message structures (based on MOM as ROS does) to provide a seamless plug-

and-play-modules functionality (Figure 5.5). However, being a higher level middle-ware (in comparison to ROS) it

works "out of the box", without requiring any installation on the host system, and also includes graphical interfaces

aimed at developing Thalamus modules as agents. It also aims at being easy to use and to share in an academic and

research setting, to be portable, and adequate for collaborative development.

Thalamus breaks the sense-think-act loop by not specifying any particular layer structure. The idea behind it

is that a Thalamus Character is an agent built out of agents. These agents are Thalamus modules that exchange

perceptions and actions between them, so while any module may actually contain a sense-think-act loop, holistically

the Thalamus Character does not. That allows it to simultaneously contain several modules that deal with behavior,

or with perception, or even with decision making, as long as the combination of them all produces the expected

overall behavior. These Characters can be used seamlessly across embodiments (virtual or robotic) and applications,

by just switching or tweaking some of the modules. An example of that is a robot interacting with users through an

application running on a touch-table, and using a Microsoft Kinect to track the user’s face. Contrary to traditional

agents that contain a "body", all the those three components represent the physical interface between the users and

the system. User perception is informed by the Kinect, which is independent of both the robot and the touch-table;

user actions are perceived by the application (e.g user clicks), and behaviors are both executed expressively by the

robot, and task-wise through the application (e.g. the agent can invoke the application to pop-up a screen while the
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Figure 5.5: Example of how several Thalamus modules coexisting in the same virtual space, exchanging messages
through a publish/subscribe mechanism.

robot points at it).

It is important to mention at this point that every component we develop for our system (including the ones on the

following sections) is developed in order to function as a Thalamus module. Therefore, our current implementations

of SERA Characters are in fact Thalamus Characters, while what we call the SERA ecosystem is the whole set of

modules that have been developed and can integrate and coexists within Thalamus, in order to compose specific

Characters.

5.1.3 Skene

Skene is a semi-autonomous behavior planner that translates high-level intentions originated at the decision-making

level into a schedule of atomic behavior actions (e.g. speech, gazing, gesture) to be performed by the lower levels

[171]. It was initially created specifically for the EMOTE project (see Section 7.1.1), with situated robots in mind,

that can also interact through multimedia/virtual interfaces (like a large touch-table). As such, it later became a

common use on other scenarios besides EMOTE, as the place where most of the other components meet in order to

integrate behaviour with the environment. Some of its features are:

• Contain an explicit representation of the virtual and physical environment, by managing coordinates of

relevant targets at which a robot can point or gaze at;

• Autonomously perform contingent gazing behavior, such as gaze-aversion and establishing gaze (the opposite

of aversion), using an internal gaze-state machine (GSM);

• Gaze-tracking a target marked as a Person using the GSM;

• Automatically gaze-track screen-clicks using the GSM (for multimedia application running on touch-tables);

• Maintaining, managing and allowing other components to control utterance libraries;

• Augment the sense of intelligence of the robot, by performing simple back-channelling, and turn-taking with

human users.
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Regarding the GSM, Skene contains a list of Targets that can be either built-in, loaded from a file, or created

in run-time. Target that are not built-in can also be updated in run-time. Each of them are indexed by a key-word,

and return a pair of angles representing the horizontal and vertical direction of such target in relation to the robot’s

embodiment.

A target can either be specified directly through angles, or through screen coordinates (X, Y), or be a procedural,

built-in target. In the later case, Skene contains code that generates the coordinates for the given Target (e.g. Random

target generates random coordinates). Screen coordinates are converted to angles using the Physical Space Manager

(PSM), where we can define the position and orientation of the embodiment, relatively to the interactive screen.

Therefore, given an (X,Y) point on the screen, it is able to calculate the direction to which the robot should direct its

gaze, in order to gaze at that specified points. This is extremely useful and important when the interaction happens

around a large touch screen, and the robot is explaining or referring to a particular object or region drawn on it.

Some targets can also be set as aliases of other targets. Creating a target called Tiago, linked to a built-in target

Person will allow Tiago to inherit all the built-in semi-autonomous behaviours that are associated with Person.

The GSM can be controlled using two types of gazing behaviours: Gaze and Glance. The difference between

both is that whenever it is instructed to Gaze towards a specified target, that target becomes the new state of the

GSM, whereas a Glance will turn the robot’s gaze direction towards the new target only temporarily ( 2 seconds)

and will then return to the current gaze state. Note that in any case, the GSM generates lower-level Gaze actions

which are published to be received by the animation engine. Because the nomenclature is the same, it might lead to

some confusion. However internally these represent different actions, as the Gaze action that controls the GSM

takes a single string-type parameter (indicating the new gaze target), while the Gaze action produced by the GSM

contains a floating-point pair that represents a physical direction to gaze at. At the API level the former is actually

called GazeAt. However within utterances, we simplify by using solely Gaze, which do refer to the GSM control

actions, as described below.

Skene Utterances are the actual representations of the aforementioned intentions and were mostly inspired by

the FML-BML pair used in virtual agents and the SAIBA model [37]. They are composed of text, representing what

the robot is to say, along with markups both for the TTS, and for behavior execution. The behavior markup can

be used to control Gazing, Glancing, Pointing, Waving, Animating, Sound, Head-Nodding and even Application

instructions. The following is an example of a Skene Utterance:

<GAZE(/currentPlayerRole/)>I'm unsure if it's a good idea to

<HEADNODNEGATIVE(2)> build industries near <WAVE(throughMap)>

the populated areas. <ANIMATE(gestureDichotomicLeft)>

<GLANCE(Eco)> What do you think? <GAZE(clicks)>

The behaviors contained in the markup are non-blocking, meaning that while the speech is executed, the TTS engine

sends events whenever it reaches a marked-up position, so that Skene can concurrently launch the execution of that

mark-up behavior. While this seems like a pliable solution, it actually allows the further Realization components to

perform their own resource management. Thus, if for example, the robot needs to gaze somewhere and perform an

animation at the same time, the animation engine is the one to either inhibit or blend the simultaneous forms of

expression.
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We also include replaceable tags in the utterances, so that these may be used as templates, and completed in

run-time. Tags are specified by enclosing a word with special characters (which may be custom-changed). Therefore

whenever an utterance is invoked to be performed, the invoker must also provide a Tags Table that indexes each tag’s

replaceable word with its current value (to be replaced with). In the utterance shown above, /currentPlayerRole/

is a replaceable tag. These can either be used within the spoken text (e.g. to indicate a user’s name or score), or

within other commands, such as the Gaze command. This allows the utterance to perform behaviours that are

only fully specified at runtime, so that the authoring process is less cumbersome. By including commands such as

<Gaze(/currentPlayer/)>, an utterance can be used at any time, and will include a gazing behaviour that depends on

the current state of the task.

The Skene utterances we have used were developed mostly by well informed psychologists that take part in

the development cycle as interaction designers. In order to facilitate such collaboration, Skene Utterance Libraries

are stored and loaded directly as Microsoft Excel Open XML spreadsheets1. Such feature hugely facilitates the

interaction designers to collaborate between them and with the technical development team by authoring such files

using online collaborative tools such as Google Spreadsheets2.

Most of what we consider to be semi-autonomous behaviours of the robot are triggered and managed by Skene.

These behaviours, described below, were built into this component as they have shown to be useful across different

scenarios.

Gaze-Tracking If the gaze target in Skene it set to a target of type Person, it will generate Gaze commands

towards the tracked persons’ direction, every time the coordinates of the Person are updated. These coordinates

should be updated by an external Perception module that can detect the person, and publish a specific message

that contains the coordinates of the person’s head.

Gaze-breaking Whenever the gaze target is set to a Person, Skene will generate a short Glance to Elsewhere

from time to time, in order to reduce the sense of fixation. Elsewhere is a built-in target that generates random

directions, but only upwards.

Politeness is a feature that acts as a very simplistic turn-taking mechanism. If there are microphones

connected to some Perception module that can detect whether or not a person is speaking, this feature hold

Skene from triggering new utterances while a person is perceived to be speaking. This way people can engage

in conversation with the robot, and even if an AI triggers an utterance in the middle of a person’s sentence,

Skene will hold it until the person finishes.

Questions were considered by allowing any utterance to be marked by the authors as being a question.

In that case it is expected that after the robot performs it, the users might answer back. Therefore, after

performing a question, the robots waits for a certain amount of question-wait seconds (e.g. 7 seconds) before

performing the next utterance, even if it had been invoked immediately. This feature is complemented by the

Politeness feature, as after those question-wait seconds, if the person is still responding to tue question, the

robot will keep waiting until the person is finished. Whenever during the mentioned question-wait period, a

person is detected to start speaking, Skene assumes that the person is replying to the question. Therefore,

1XLSX: http://fileformat.wikia.com/wiki/XLSX (accessed January 12, 2019)
2Google Spreadsheets: https://www.google.com/sheets/about/ (accessed January 12, 2019)
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the utterance authors may also specify a backchanneling category from which Skene will randomly take an

utterance to perform it immediately after the person finishes speaking. With proper authoring, the use of these

features can easily allow the robot to seem like it’s understanding the users, even if no speech recognition or

actual dialogue management is used at all.

5.1.4 Other SERA modules

In order to implement fully interactive scenarios, various other modules were also developed. We won’t go into full

detail, but outline some of the ones that we consider most relevant.

Kinect modules

The Microsoft Kinect has been one of our major components for User Perception. We have used modules both for

Kinect v1 (initially) and then for Kinect v2 after the latter was released. It was used mostly for face-tracking, so that

the Behaviour Manager and Animation Engine can be informed where to look at when performing gaze-tracking.

Additionally we have used it to detect face-direction, in order to have a hint of where the users are gazing at -

however face-direction is not sufficient for that process given that user may be facing a given direction with their

face, while gazing at another one using their eyes. For proper gaze-direction detection one would have to use another

system that can detect eye-gaze direction. Because the Kinect also includes an array of microphones we have also

used it in some situations for speech-direction detection, and from there, to detect the active speaker when multiple

users (faces) are detected. Although it not a very reliable option, it was used in situations where we did not want to

require users to use a lavalier microphone, such as in public demonstrations and events. Another useful detection

that can be made using the Kinect (although we did not use it in our scenarios) is the pointing-direction, by taking

the users’ detected skeletal information, and using the direction of the active arm. However we have found that the

Kinect performs skeleton and facial detection separately, and in cases where the users are sitting, face-detection

works, while skeleton detection does typically not.

Sound Detector

The sound detector modules takes the input of a pair of audio-inputs, such as two lavalier microphones, which can

be connected to the computer using a stereo input audio device (such as a small mixing desk), or even a portable

recorder such as the Zoom H4n or Zoom R6. It was used in user studies in which we did not want to rely on the

Kinect for active speaker detection, and where there was some initial set-up time for the participants. For public

events, placing and adjusting the lavalier microphones would be too impractical, so in those cases we would use the

Kinect.

Speaker Rapport

This module takes the active-speaker detection information (provided either by the Kinect or the Sound Detector,

as both produce the same events), and generates a Gaze action towards the active user. It also performs volume

mimicking, i.e., it takes the measured decibels of the active speaker’s sound, and attempts to match it, so that the

robot will speak louder when the users are excited and speaking louder, and lower then they are more relaxed and
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speaking lower. The Gaze action does not include coordinate information - instead it instructs to gaze towards the

possible active speaker possibilities (in our case either Left, Right, Both or None). The Behaviour Manager will be

the one to know where the Left or right users are located, and direct the configured Gaze action to the Animation

Engine. When the active speaker is None then it will gaze at a random point. When it is Both, then it will alternately

gaze between each of them with a fixed time interval (e.g. 2000 ms).

Media Player

For scenarios in which participants were required to watch a video with the robot, we developed the Media Player

module, which allows to play media files full-screen in a computer that is co-located with the participant. The

requests to play or stop the media would all come from the scenario’s AI module.

5.2 The Nutty Pipeline for Programmable Robot Animation Engines

The Nutty Pipeline was formulated to inform the design, development and execution of the programmable robot

animation engine. Just like the Nutty Workflow (Section 4.3), the pipeline presented here is deeply inspired on the

work developed previously with the Nutty Tracks animation engine (Section 6.1), which was used as a sandbox to

explore and develop new robot animation techniques for interactive applications [121, 42, 157].

Such an animation engine in Nutty terms, is a program that continuously runs a sequence of steps at a given rate,

in order to produce on-line motion for a robot, based on interactive parameters specified by an AI or tele-operation

module, and on user- and environment-based perception data. The Nutty Pipeline lies within the animation engine,

and configures the steps that run on each animation cycle. The choice of those steps specifies how the motion

is effectively produced, given a set of inputs, rules, and various types of motion generators. The concept of the

programmable animation pipeline is deeply inspired by programmable graphics pipelines such as the one provided

by OpenGL [174]. It means that the actual execution pipeline is not fixed, but instead, can be programmed to specify

both the execution layout, the steps that will run, and how they are parametrized. It allows an animation engine

to be used with different embodiments and applications, by introducing the new concept of Animation Program.

Figure 5.6 illustrates how the Nutty Animation Pipeline fits within a Nutty-based animation engine.

Figure 5.6: A Nutty-based animation engine, including the Nutty Pipeline. At each clock cycle, the Input parameters
along with the selected Animation Program are provided to the Animation Processing Unit, which outputs a (Partial)
Animation Frame containing the motion parameters for each programmable DoF.

The Input to the pipeline consists of parameters that are provided by other components such as the AI or the

Perception Engine. Those input parameters can be very diverse taking several forms such: gaze-target coordinates;
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expressive posture to exhibit; a pre-designed animation to play; an array of emotional-state values, and even

particular custom commands such as reset posture, or activate idle-motion. There is no fixed specification for the

animation pipeline input, which may need to be designed and developed for each particular situation.

The Output of the pipeline generates an Animation Frame that is compliant with the currently selected

embodiment and output module. Although the embodiment and output are typically enforced to work together,

it is important to distinguish them. The embodiment specification defines the available DoFs and their layout, or

hierarchical structure. The output typically connects with either the Robot Software or the Pre-Viz’s API, in order to

render the animation frame, either on the physical embodiment or on its virtual representation.

An Animation Frame (AF) is a data structure, containing both header information and a matrix of motion

parameters for each programmatically animatable DoF. The header may contain information such as the embodiment

designation and the frame’s delta-time. For each DoF, the motion parameters may have various data types, depending

on the kinematronic dimension of the DoF. For non-integer numeric values, it may be as simple as a single, absolute

set-point (no derivatives), or include 1st, 2nd or 3rd-order derivatives (velocity, acceleration and jerk). However it

may also contain discrete or enumerate values, which are more appropriate for e.g. a display-expression component

with pre-defined expressions. We also distinguish between an Animation Frame and a Partial Animation Frame

(PAF) in that the partial animation frame may contain only part of the whole list of DoFs (or in some cases, even

none - an empty animation frame). This allows the pipeline to output only the signals that have been modified in

each cycle, allowing to control different DoFs at different rates, and to perform blending and other operations using

only a selected set of DoFs. When we refer to an AF is, it always contains parameters for all the DoFs (i.e., a full

animation frame), while a reference to a PAF means that it may contain all or only part of the DoFs, and even be an

empty frame, with no DoFs (which therefore produces no effect).

The central component of the Animation Engine and Pipeline is the Animation Processing Unit (APU), which

executes an Animation Program. In the Nutty pipeline, an Animation Program takes a similar role as a Shader

program in the OpenGL pipeline [174]. The APU can be developed to run at different levels of complexity,

depending on the requirements of the robot-animated application, as illustrated in Figure 5.7.

The main building-block of the APU is called an Animation Block (AB). Multiple variants of ABs are created

for different purposes. Each of these blocks takes in a set of input parameters, and generates a PAF through a

specific method such as playing an animation file, or generating a motion signal through a mathematical formula.

We further distinguish an operator AB as one that takes in a PAF that already contains a signal and modifies it,

versus a source AB, which provides a source for the signal and generates it. In many cases the AB will also manage

an internal state, such as in the case of an animation file player, for which, given the delta-time as input, the AB

calculates the new time-position within the animation, and outputs the respective frame. That allows each AB to

control how the signal is produced in the time-domain, along successive cycles of the animation engine. Given that

they output PAFs and not necessarily AFs, an AB may also be some sort of single-dimensional motion generator

such as a sine-wave or 1D Gaussian noise-generator. The pre-loaded Animation Program will specify the type of

APU that is required, describe the required ABs, and specify how they are laid out into sequences, layers and stages.

The following list provides an overview of various complexity levels for APUs. A given animation engine can

be developed to support only up to a specified level of complexity, or support all of them. Later, the AF will let the

engine know what kind of layout is required to be set-up.
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Figure 5.7: The four types of Nutty APUs.
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The Level 0 APU is the simplest form of APU, and contains a single Animation Block. Conceptually, a Level 0

APU is also interchangeable with an AB, as both contain a single execution step.

The Level 1 APU supports multi-block processing, or a sequence of Level 0 APUs. Each AB may output to

another AB and therefore it allows for more complex animation, that is achieved by sequential composition

of ABs.

The Level 2 APU supports multi-block, multi-layer processing. Each sequence of AB blocks composes a single

layer and is equivalent to a Level 1 APU. The various layers are blended using a specified Blending Operation,

in order to produce a final, single PAF.

The Level 3 APU supports multi-block, multi-layer and multi-stage processing. At the moment we define only

two stages. The First Stage consists of a Level 2 APU. The Second Stage allows to include more complex

and intensive motion-generation processors such as inverse kinematics (IK) or path-planning. The Stage 2

processors are meant to be used as post-processing steps, and should be applied to several - or all - of the

DoFs simultaneously. Nutty Tracks [121] is an example of a Level 3 programmable animation engine3,4.

Note that depending on the requirements of the animation engine, one may create other forms of APUs, such as a

multi-stage, multi-block APU that does not supports layers, or a multi-layer, single-block APU that does not support

sequential composition.

5.3 Animation Tools for Social Robots

When including creative artists such as animators into the development workflow, one of the first question that

arises is the tools that the artists can use to author and develop expressive behaviour for the robot. Typically those

artists are commissioned to produce only pre-authored animation files that can be played back by the animation

engine. This may be achieved by either developing a custom-build GUI that allows them to directly develop on the

system’s tools, data types and configurations, or to allow the artists to use their familiar animation tools such as

3dsmax5, Maya6, SideFX Houdini7 or even the open-source Blender software8. These existing animation packages

allow to export animation files using general-purpose formats such as Autodesk FBX9. That requires the animation

engine to support loading such formats, and to convert them into the internal representation of pre-animated motions.

Alternatively, and as most of those software support scriptable plug-ins, one may develop such a plug-in that allows

to export the motion data into a format that is designed specifically for the animation engine.

Upon our introduction of the programmable animation engine, and of animation programs, it also becomes

necessary to understand how the animators can contribute to such animation programming, alongside with their

participation in the motion design.

3https://vimeo.com/67197221 (accessed January 12, 2019)
4https://vimeo.com/232300140 (accessed January 12, 2019)
5https://www.autodesk.com/products/3ds-max/overview (accessed January 12, 2019)
6https://www.autodesk.com/products/maya/overview (accessed January 12, 2019)
7https://www.sidefx.com/products/houdini (accessed January 12, 2019)
8https://www.blender.org (accessed January 12, 2019)
9https://www.autodesk.com/products/fbx/overview (accessed January 12, 2019)
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Figure 5.8: A screenshot of the Nutty Tracks plug-in for Autodesk 3dsmax, illustrating the skeletal animation rig
created by the plug-in. An animator can generate this rig through the simple click of a button, and then use the
plug-in to export the final animation to a Nutty-compatible animation file.

5.3.1 Animation Design Tools and Plug-ins

We argue that for simple cases, developing an e.g. FBX import for the actual animation engine run-time environment

is a good choice. In this case the learning curve for the animators is almost inexistent, given that they will be

working on their own familiar environment. They will only need to adapt to specific technical directions such as

maintaining a properly named and specific hierarchy for the joints and animatable elements, so that those can be

properly imported later on. When the nature of the project or application does not allow to rely on third-party,

or proprietary software, then the only option may be to develop a custom animation GUI, which poses as the

most complex and tedious one. However our feeling has been that the creation of plug-ins for existing, third-party

animation software provides a good balance between development effort, usability, user-experience and results.

The creation of plug-ins for existing animation software includes the same advantages and requirements as

in the first case, of developing an animation-format importer for the engine. Animators will be familiar with the

software, but may have to comply with certain technical directions in order for the plug-in to be able to properly

fetch and export the motion data. Figure 5.8 shows an example of the Nutty Tracks plug-in for Autodesk 3dsmax.

By having the EMYS embodiment already loaded in the Nutty Tracks engine, the plug-in can create an animatable

rig for the robot, through the click of a single button, based on the embodiment’s hierarchical specification including

rotation axes, joint limits, etc. Optionally it may even include the actual geometry of the robot for a more appealing

experience. From here on an animator may animate each of the gizmos that were created for each of the robot’s

animatable DoFs, using his or her typical workflow and techniques.

However, the development of such a plug-in also allows to augment the creative development workflow, by
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adding visual guides directly into the viewports of the animation software, in order to represent technical constraints

that are required specifically for robots, such as kinematic ones (e.g. velocity, acceleration, jerk limits). Figure

5.9 shows an example of a plug-in developed for Autodesk Maya, to show the trajectory-helper of a given mobile

robot platform, which highlights the points in the trajectory that break some of the robot’s kinematic constraints. In

this case, green means that the trajectory is within the limits, while the other colors each represent a certain limit

violation, such as maximum velocity exceeded (orange), or maximum acceleration exceeded (pink) or maximum

jerk exceeded (red). Based on this visual guide, the animator knows where the trajectory must be corrected, and is

able to readily preview how the fix will look like, while making any further adjustments to the motion in order to

ensure the expected intention or expression is properly conveyed without exceeded the physical limits of the robot.

Other useful features may be to perform automatic correction of such constraints, while rendering the result

directly within the animation environment, thus allowing the animators to fix the motion that results from enforcing

such constraints, in a more interactive way. From what we have gathered however, animators are typically not

happy to have a tool that can change and control their animations. Instead, the preferred option is to keep the

artist-animated version of robot untouched by the plug-in, and to create an additional copy of the same robot model.

This copy, which we call the ghost, will, in turn, not be animatable or even selectable by the animator, but instead,

will be fully controlled by the plug-in. Therefore, when the animator is previewing the playback of its animation,

the plug-in will take that motion and process it in order to enforce the kinematic limits. The resulting corrected

motion is however applied only to the ghost, which therefore moves along with the animated robot. If at any point,

the animated motion did exceed the limits, the ghost will be unable to properly follow the animated model due

to the signal saturation, which allows the animator to have a glimpse not only of where the motion is failing to

comply with the limits, but also how it would look like if the limits were enforced. In some cases the animator

might actually feel that the result is acceptable, even if the originally designed motion would report limit violations

on a trajectory-helper solution such as the one of Figure 5.9. Note that in the case of the ghost-helper technique,

whenever the final animation is exported, it should be exported from the ghost robot, which contains the corrected

motion, and not the animated robot which does not.

In summary, the two major robot-animation features we have presented, and that can be provided through the

use of animation software plug-ins, are the trajectory-helper, as presented in Figure 5.9, and the ghost-helper,

described in the previous paragraph. Depending on the animator’s preferences, and the scripting capabilities of

the animation environment, either one or both of the features can be used. The ghost-helper seems to provide a

more agile solution, as the animators aren’t required to fix all the limit violations. As long as they accept the motion

provided through the ghost, the problem is considered to be solved, thus allowing them to complete animations

quicker than using the trajectory-helper. The trajectory-helper however allows an animator to better ensure that

all the points of the trajectory are smooth and natural, and especially that the automatic correction (achieved e.g.

through signal saturation) will not introduce any other unexpected phenomena. This feature is especially important

when animating multiple robots10, to ensure that each of the individual auto-corrections do not place the robots in

risk of colliding.

Without the ability to preview or at least evaluate the animated motion directly within the animation environment,

the animators would need to jump between their software, and a custom software that solves and reports on those

10https://gagosian.com/exhibitions/2018/urs-fischer-play/ (accessed January 12, 2019)

76

https://gagosian.com/exhibitions/2018/urs-fischer-play/


Figure 5.9: A screenshot illustrating the robot-animation trajectory-helper feature implemented through a plug-in
into Autodesk Maya. This feature draws the motion trajectory as a path directly into the scene of the animation
software, and highlights the points of the trajectory that break any of the robot’s kinematic limits.

issues, while providing typically a mediocre or even no visual feedback on what is happening, and what needs to be

fixed. Besides making it a more complex workflow, that option also hinders and breaks the animator’s own creative

process.

Finally, an additional feature that can be developed through plug-ins for existing animation software is the ability

to directly play the animations through the robot software or interactive pre-visualisation system. This allows the

animators to include testing and debugging into their workflow, by being able to see what will happen with their

animations once they become used during interaction with the users and the environment.

5.3.2 Animation Programming Tools

Animators working with social robot application are required to learn some new concepts about how motion works

on robots, in order to identify what can or cannot be done with such physical characters, as opposed to what they are

used to do in fully virtual 3D characters. Besides having to adapt to certain technical requirements when building

their characters and animation rigs, they may also need to learn how to interact with some other pieces of software

that will allow them to pre-visualize how the designed motion will look on the robots during actual interactions.

At some point the character animators will acquire so many new competencies and knowledge that they become

actual robot animators, an evolution of animators that besides being experts on designing expressive motion for

robots, may also have learned other technical skills as part of the process. One such skill is what we call animation

programming. The difference between a non-robot-programming animator, and a programming-robot animator is

akin to the difference between a texture artist and a shader artist (or lighting artist) in the digital media industry.

The texture artist is a more traditional digital artist that composes textures that are statically used within digital

media. A shader artist is able to take such textures, or other pattern-generators, and configure the shaders (i.e.,
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programs) to adapt and change according to the environment parameters and applications. The shaders are, in that

sense, programmable textures. Similarly, and animation programs are programmable animations.

Animation programs can, at a very basic level, be specified by some kind of mark-up code. However, we believe

the best option to be taking inspiration from currently existing tools. Both Autodesk’s Slate material editor11,

and the Unreal Material Editor12, are well-established artist-friendly shader-programming interfaces. Houdini4

is also known for its visual graph-based visual effects programming system. Pure Data13 allows visual, sound

and performance artists to develop their own musical instruments, visual effects processor, or any other kind of

interactive system, using a visual block-graph paradigm that allows to simultaneously run the program while

also allowing it to be composed, all in real-time. As such, we argue for the creation of similar, artist-friendly,

animation-programming editors.

These new animation programming tools can be built from scratch as standalone GUI application (e.g. Nutty

Tracks), or using game development tools such as the Unity Engine14, which allows for the scripting of new interface

tools. In this case, because a game engine such as Unity3D also provides 3d visualization and animation tools, it

could be extended by an animation programming tools in order to become a fully-fledged animation designing,

programming and pre-visualization tool.

Nutty Tracks provides an example of how such an editor may be presented15. Its programmable animation GUI

is also shown in Figure 5.10 and further details about it are further described in Section 6.1. It was conceptualized

to allow an animator to load and pre-visualize how animations and expressive postures designed in another software

(e.g. 3dsmax) will look like when procedural layers of motion are added, such as ones that generate idle-behaviour,

user-face tracking, or inverse kinematics. Such output motion is processed by the Level 3 APU in Nutty Tracks,

and could not be properly visualized within the typical animation design software (which are based on a timeline).

However the process of composing and tweaking the animation program using animation blocks follows a workflow

that is similar to the one found on other artist-friendly applications that inspired us.

Despite such effort, it will still be the case that such an animation program editor will pose as a truly novel

tool for the animators, with a steep learning curve. An animator may e.g. be familiar with the concept of an

animation layer, which does not match the one used in the visual animation program editor. The idea of composing

programmable animations using operator- and generator-blocks may have a paralell with certain motion control

nodes found in some animation software, but the way they are used and composed may also not seem intuitive or

obvious for the traditional 3D animator. As such, it is required that these tools are developed with a user-centered

design perspective, in close collaboration with the end-users, who are the actual animators, and to ensure the GUI

provides an understandable translation between the animator’s mindset, and the underlying mechanics and pipeline

of the animation engine.

11https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/

files/GUID-7B51EF9F-E660-4C10-886C-6F6ADE9E8F56-htm.html (accessed January 12, 2019)
12https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Editor/Interface (accessed January 12, 2019)
13http://puredata.info (accessed January 12, 2019)
14https://www.unity.com (accessed January 12, 2019)
15https://vimeo.com/67197221(accessed January 12, 2019)

78

https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-7B51EF9F-E660-4C10-886C-6F6ADE9E8F56-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-7B51EF9F-E660-4C10-886C-6F6ADE9E8F56-htm.html
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Editor/Interface
http://puredata.info
https://www.unity.com
https://vimeo.com/67197221


Figure 5.10: The Nutty Tracks GUI, used for animation programming in a multi-layer, multi-block visual editor.
Within the figure, we see several different Animation Blocks. Some of them take PAFs as input and/or output
(black connection points), while others provide colored connection points for single-dimension signals, which are
color-coded depending on the type of signal they carry (e.g. floats, integers, strings, etc..). It additionally includes
an Inverse Kinematics interactive visualizer which allows an animator to tweak some of its parameters, in order to
adjust the generated motion to the robot’s kinematic capabilities.
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Chapter 6

Robot Animation Technology

6.1 Nutty Tracks

Nutty Tracks (Nutty) is a symbolic animation engine based on CGI methods that allows to animate both virtual and

robotic characters [121]. It implements the Nutty Pipeline as a Level 3 APU (Section 5.2) and is simultaneously a

design-time and run-time environment, i.e., it is used both for designing and programming animation, as well as to

execute it in real-time during interaction.

Using Nutty provides us with high flexibility regarding the design, blending and modulation of animations

on any robot. It allows to use professional animation tools (e.g. Autodesk 3ds Max1) to design animations and

postures, and provides a generic translation layer between the character’s animation parameters and the actions and

parameters that arrive from other components in the system.

One of the principles of Nutty is to work on animation at a symbolic level. This means that while the system is

aware of the structural hierarchy of the robot, its animation isn’t processed at the level of the actual joints, but on

symbolic channels, which may represent joint motion or some other signal (similar to [104]). These symbolic joints

can actually be mapped to a real robotic joint, or to a set of joints, thus also allowing to work as an aggregated joint

(e.g. we can animate a 1-DoF joint called VerticalGaze which is later decomposed into several real motors of the

real robot’s neck).

The composing of animation programs in the Nutty Tracks GUI follows a box-flow type of interface greatly

inspired in other programming tools commonly used by artists, such as the Unreal Engine 2, Pure Data3 or SideFX

Houdini4. Figure 6.1 shows the Nutty Tracks GUI.

We recall here the schematics of the Nutty Pipeline as Figure 6.2 and illustrate the Nutty Tracks APU on Figure

6.3. Note that within Nutty Tracks, NAP stands for Nutty Animation Program. The Body Model is the entity that

contains the Embodiment’s specification, while the Output Plugin is a separate component that can stream the frames

through different transports (e.g. TCP, JSON-TCP), or different interfaces (e.g. Arduino). The input control to Nutty

Tracks is provided through Thalamus, which integrates Nutty Tracks into a SERA environment (Section 5.1.2).

13ds Max: http://www.autodesk.com/products/3ds-max/overview (accessed January 12, 2019)
2Unreal Engine: http://www.unrealengine.com/ (accessed January 12, 2019)
3Pure Data: http://puredata.info/ (accessed January 12, 2019)
4https://www.sidefx.com/products/houdini (accessed January 12, 2019)
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Figure 6.1: The Nutty Tracks standalone GUI, used for composing animation programs, and to execute them in both
a virtual window (for diagnostics) and on the real robot.

Figure 6.2: (reiteration of Figure 5.6) The Nutty Pipeline. At each clock cycle, the Input parameters along with the
selected Animation Program are provided to the Animation Processing Unit, which outputs a (Partial) Animation
Frame containing the motion parameters for each programmable DoF.

Figure 6.3: The Nutty Tracks Level 3 APU.
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The following is a list of the main features and contributions of Nutty Tracks:

a) Provide a body-agnostic animation representation

Animation is represented in a generic animation frame type we call the Animation Buffer (Ani-Buffer). The

Ani-Buffer is explained in more detail further in section 6.1.4.

b) Provide symbolic degrees-of-freedom

By symbolic, we mean that all the DoFs that are animated are just containers of animation data and are not yet

assigned to any specific virtual or hardware articulation. Abstracting DoFs from the skeleton when animating

robots has been previously suggested by [104]. Therefore, a symbolic DoF may either contain motion data

for one specific joint, for an aggregation of joints, or for a non-motor expressive channel such as a LEDs

brightness, or the morph weight of a morph target in a virtual face. The idea behind using symbolic DoFs is to

animate certain expressive channels, and not to specific parts of the animated body. A clear example would be

the Gazing channels. A basic embodiment would be able to gaze vertically and horizontally, which means that

there are two gazing DoFs. However, some embodiments may have several articulations for the VerticalGaze

(e.g. humanoid characters). Nonetheless, what actually matters expressively is the overall vertical angle that

is applied to all the gazing articulations. Instead of having to consider how many articulations a character’s

neck has, we can animate just one high-level angular component which in rendering will be decomposed into

those actual articulations. This allows symbolic gazing animation to be used on any character that is able to

perform gazing behaviour, regardless of the number of articulations it has for doing so.

c) Modular layered animation controller composition using box-flow

One of the most useful features gained from using a generic animation representation format is that reusable

Animation Controllers (ACs) can be developed to process motion signals regardless of the embodiment that is

being animated. These can then be composed in a controller-chain form, and also in layers so that different

parts of the NAP can be composed independently, and activated and deactivated depending on what is needed.

The composition of the controller chains in the GUI follows a box-flow approach, i.e., the user adds ACs to a

layer and then uses click-and-drag between connection points in order to connects the ACs (more details in

Section 6.1.7).

d) Control animation parameters from an AI

Nutty Tracks does not intrinsically provide an integration with any type of AI engine. Instead, this is

performed by developing a plug-in for Nutty that connects to that AI. What Nutty provides is that the ACs are

defined with controllable parameters that can be linked to other ACs. Taking as example an AC that generates

a sine wave given an amplitude and frequency, this sine wave can be used to control some DoF of a character.

The amplitude and frequency parameters can either be specified in design-time, or be linked to some other

AC that received input from an AI. In our implementation we implemented a Nutty-Thalamus plugin that

allows such information to be provided to Nutty Tracks as Thalamus messages. Note that an AC is like a

blackbox that outputs some kind of signal, and may receive some kind of input. An AC that is part of an

AI plug-in would be a box with no inputs (in Nutty) but that internally receives messages from that AI and

translates them to some signal type and outputs that value. Further detail on the types of signal used by ACs

and AC-Parameters are provided in section 6.1.7.
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e) Body-agnostic Output

All the previously mentioned goals sum up to the final designation of supporting any kind of embodiment.

By providing a generic animation representation, and being able to compose animation programs out of

reusable controllers, the final animation frame remains in the generic format. Although during execution

the system works with a specific embodiment configuration, the main statement on body-agnostic output is

that the pipeline does not enforce any specific restriction on the type of embodiment that can be used. After

just developing a BodyModel for each embodiment and an appropriate output plug-in, the same animation

system and animation controllers can be used to create different NAPs for each embodiment and context.

Moreover, by providing mechanisms that allow the ACs to be controlled from an external AI, the whole

animation system can be reused along with other components of the overall AI agent, in different applications.

The BodyOutput component is detailed further in section 6.1.2

f) Provide embodiment proprioception to the Animation Controllers

The Heartbeat mechanism was introduced in order to provide the animation engine with the possibility of

performing dead reckoning. It is useful especially on initialization, as it provides an integrated mechanism to

know what is the current state of a robot’s joints and thus avoiding a sudden abrupt movements in start-up.

It can also be used later by Animation Controllers that are created to act based on body feedback. The

Heartbeat response from the embodiment is expected to contain the sensor-measured values of each of the

joints. Optionally it can also provide e.g. the current measured centre of mass if the embodiments has sensors

to provide so, or other data that the Output plugin and embodiment are able to provide.

6.1.1 Execution

Nutty Tracks starts by loading a specified NAP (Section 6.1.3), and setting the specified NuttyOutput and BodyModel

(Section 6.1.2) which contains the representation of the selected character’s embodiment in terms of available

degrees-of-freedom (DoFs) and its hierarchy. The cycle executes the Nutty Animation Program (section 6.1.3)

in its APU. The NAP specifies one full iteration of the animation cycle, and contains a set of layers with chains

of Animation Controllers (section 6.1.7) that will generate and process the motion data into a partial animation

frame represented as an Animation Buffer (section 6.1.4). After each cycle, the final Animation Buffer is sent to the

embodiment via a NuttyOutput plugin. The Animation Cycle can run faster than the specified output rate. Therefore

in order to not overflow the output, the Output component contains a Choker that limits the output rate to a fixed

number. In order to provide smoothness on robotic embodiments, this rate should be at least 30Hz [104]. It also

contains a DirtyFilter, which only outputs the frame if it has been modified in the last iteration and a Repeated Value

Filter (RVF) which abstains from re-outputting values that have not changed since the last cycle.

The Heartbeat Cycle (on the left) runs in parallel. This cycle was added in order to add additional support for

robotic embodiments. While in a virtual embodiment one can render the character immediately with any joint

configuration, robotic embodiments work differently. Instructions are sent to the a servo controller to command

the servos (joint motors) to move to a particular position/rotation, with a specified torque (or speed). Then the

servo acts on its own. The interpolation of the joint between two given angles is actually performed internally by

the servo. Servos therefore generally provide sensors which can be used to read the current position/rotation of
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a joint. After instructing a servo to move to a particular angle, one can use the sensors to verify not only when,

but if it has actually achieved the desired angle. Hoffman has previously relied on dead reckoning to optimize

the bandwidth of communication with the servos [136]. This technique was adapted from aviation and mobile

robots navigation control. Instead if polling the servos’ sensors after each instruction, they are polled at a slower

rate. Between consecutive instructions, the servos are assumed to have moved according to the motion they were

instructed to perform - this assumed output may be referred to as the efferent copy of the output. Upon sensor

polling, the assumed rotations are corrected. In our pipeline, this polling happens at a fixed rate, slower than the

Animation Cycle (e.g. 5Hz). The retrieved state is then updated in the Animation Cycle and made available to

Animation Controllers.

6.1.2 BodyModel and NuttyOutput

The purpose of the BodyModel is to provide a description of the Animation Channels (further detailed in section

6.1.5) available in a given character embodiment. It is defined externally and loaded in runtime as a plug-in. It is

tightly linked with the concept of symbolic DoFs, as this is the component that informs the system on what the

embodiment’s available DoFs are, and is later used by the NuttyOutput or external animation module to translate

those DoFs to the actual embodiment’s articulation. The BodyModel as seen in figure 6.4 represents a given

embodiment identified by a Name, a hierarchy of BodySets and a list of Enslaving rules. Each BodySet is an

actual list of Animation Channels which represent DoFs of an animatable character. The purpose of having a

collection of BodySets in the BodyModel instead of just a collection of DoFs is towards portability of animations

across embodiments, as long as those all consider the same reference frame. Each BodySet is like a ”namespace”

of DoFs. This allows that animation files created for DoFs belonging to a given BodySet may be used with other

BodyModels that contain the same BodySet (even if in overall, they represent a different character embodiment).

An example of this would be to consider a generic Gazing BodySet that contains two Channels: VerticalGaze and

HorizontalGaze. The Enslaving rules are specified to map DoFs from generic BodySets to the DoFs that are specific

to the embodiment.

In order to provide a better understand of the BodyModel, figure 6.5 shows how this would look for the EMYS

robot. It contains three BodySets (one EMYS-specific, and two generic ones), along with how each of the generic

DoFs should be mapped to EMYS’s specific DoFs. Internally within the BodyModel, these rules also contain the

calculation methods for distributing values through the enslaved DoFs.

The common workflow of development for each new embodiment would be to create a plug-in that contains

both BodySets, a BodyModel and a NuttyOutput component. An example of the creation of a BodyModel is further

detailed in Section 6.1.8. As to developing a NuttyOutput, that is tightly connected with the type of output desired,

such as connection to an Arduino, to a TCP server, to ROS, or even back to Thalamus, and can therefore be developed

Figure 6.4: The contents of a BodyModel.
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Figure 6.5: The BodyModel for the EMYS robot (with some example generic BodySets and correspondent
enslavings).

by any software engineer according to those needs. In any case they are the most re-usable component of the

pipeline. Generic BodySets may be distributed in separate libraries in order to be shared by different embodiments.

The NuttyOutput just implements two operations. Animate, given an Ani-Buffer which is result of a NAP

interation, translates the Ani-Buffer using the BodyModel information, and renders it on the embodiment (or sends

it to some external rendering system). HeartBeat polls the embodiment for its the current sensor-based state and

provides the result back to the system. In case of most virtual characters, the HeartBeat can just return the Ani-Buffer

that was provided to the last Animate operation.

6.1.3 Nutty Animation Program (NAP)

A NAP is the sequence of instructions that generates and processes animation data on each frame. The concept of

animation as a program was inspired in computer-graphics (CG), where material shaders are programs that create

and process the appearance of CG objects. In particular, inspiration from artist-friendly visual tools such as the

Unreal Editor’s Material Editor (mentioned in section 5.3.2) encouraged the creation of an animation system based

on small modular pieces that could be composed according to different purposes and outputs. Just as in CG one can

use texture generators (e.g., gradients, Perlin Noise) or pre-designed textures as input, in animation one can either

load pre-designed animations or use motions generators (e.g. sine wave, Perlin Noise). And just as with image date,

animation data can be processed and composed using operators and filters.

In runtime, the NAP serves as a recipe or configuration for Nutty Tracks to set-up the APU. It contains the

definition of the Layers and the chain of Animation Controllers in each layer, along with the initial values for each
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of the ACs (further detailed in Section 6.1.7). It may also contain other information such as Motion Filter settings,

IK settings, or what BodyModel and Output to use, and any further configuration for them (e.g. COM port, TCP

address and port, etc..). Having all that information in the NAP allows Nutty Tracks to be fully initialized through a

script, and would also allow it to be ran as a headless APU (with no GUI), although the headless version of Nutty

has not been implemented at date.

The creation of a NAP in Nutty Tracks follows a box-flow approach, so that the user can visually create the

controller chains for each layer using the GUI, while immediately visualizing the output that it produces while it is

being created (as happens with the Material Editor in the Unreal Engine5). A NAP can then be saved, so that it can

later be loaded and used in run-time applications.

6.1.4 The Ani-Buffer

The Ani-Buffer (AB) is an object that contains animation information for a given set of DoFs. Its purpose is to

represent a partial animation frame. By partial we mean that it needs not to contain animation info for all of the

DoFs that the animated embodiment possesses, both to reduce the amount of frame data send when used with

robotic embodiments, and to not overflow the lower-level motor control system with repeated data. As seen in

Figure 6.6, this buffer contains some meta-data and a list of Animation Channels that can refer to DoFs of any type

of embodiment. The list is filled in a per-frame basis by Animation Controllers (ACs) that can either generate such

frame values or process existing values (filled in previously in the same animation iteration by other ACs). The

meta-data fields contained in the Ani-Buffer are:

BodyModel to which the given frame applies. On creation, the Ani-Buffer is set to be using the BodyModel

selected in NuttyTracks;

Dirty is a flag used to mark if any data was written to the current Ani-Buffer instance (so that it can by skipped

otherwise);

DeltaSeconds is a double-precision value representing how many time in seconds has passed since the previous

animation iteration;

At each animation cycle, an empty Animation Buffer is created for the first layer, and further fed to the its first

Animation Controller (Section 6.1.7).

Figure 6.6: An example partial Ani-Buffer for the EMYS robot.

5Unreal Engine Material Editor: https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/Editor/

Interface/index.html (accessed January 12, 2019)
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6.1.5 Animation Channels

Each Channel represents an animated expressive DoF (based on the specification of Kinematronics on Section 4.2).

Along the animation pipeline (before being sent to the embodiment), it contains the following information:

• A double-precision animation Value;

• A boolean Mask value which states if the Channel was animated in this iteration;

• A double-precision Passthrough value between 0 and 1 which serves as an ”opacity” mask in order to facilitate

per-channel blending (by default it is 1);

• A double-precision Speed value which is defaulted to 1. This provides additional support to robotic embodiments.

It is intended to be used as a multiplier of the robotic servo’s default torque value (i.e., by using a value of 0.5, the

servo should be set to move at half of its default torque speed). This way ACs can also control the torques of a

robot’s servos along with their rotation. A further extension would also allow to include the full motion parameters

of velocity, acceleration and jerk if required

• A boolean SpeedMask value which states if the Channel’s speed was changed from the default value of 1. Note:

SpeedMask and Mask are marked independently;

• A FrameType option which is Degree by default and represents the type of Value contained in the channel. Degree

means it represent a rotation in degree angles. Other options are Radians, Percent (keeps values between 0 and

1, double-precision) or Valence (keeps values between -1 and 1, double-precision) depending on the needs of the

embodiment (i.e., if animating a channel that actually represents a robot’s light, Percent may be most appropriate to

use).

6.1.6 Ani-Buffer Operators

The Ani-Buffer contains several operators in order to allow Animation Controllers to manipulate it:

SetChannelValue(X) fills in the specified channel with the value X. It also marks that channel as active in the

buffer’s Mask field and sets the Dirty flag.

SetChannelSpeed(S) changes the Speed multiplier of the specified channel to S, sets its SpeedMask and marks the

frame as Dirty;

ClearChannelValue() resets the specified channel to its zero-values and un-marks its flags. If no other channel is

being used, the Dirty flag is unmarked;

Conversion of a channel’s value to another FrameType is provided internally from Degree to Radians and vice-versa.

Conversion to and from Percent or Valence is performed by the BodyModel in order to consider the values’ bounds

(such as joint limits);

Retime(T) changes the DeltaSeconds value of the frame to T;

Touch() marks the buffer’s Dirty flag without having set any values;

Clone() creates a deep copy of the Ani-Buffer;

Multiply(D) multiplies all the Ani-Buffer’s active Channels by the double-precision D value;

Add(A,B) creates a new Ani-Buffer containing the result of adding all the active Channels of two given A and B

Ani-Buffers. Values, Speed and Passthrough are all added. The resulting Ani-Buffer uses the same BodyModel as A.

Channels that exist or are active only in A are copied to the result. The same applies to Channels that exist in both A

88



and B but are only active in B; Channels that exist only in B but not in A are ignored.

Subtract(A,B) works as Add, but performing subtraction of values;

Override(A,B) returns an Ani-Buffer that results of copying A and overriding it with the Channels that are active in

B. This allows to combine partial frames by overriding instead of addition.

6.1.7 Animation Controllers and Layers

Animation Controllers (ACs) are blocks of code that perform a specific operation, and output either a single or

multi-dimensional signal. Multidimensional signals are stored as ABs, while single-dimensional signals can be

either floats, integers, strings or booleans.

There are two main types of ACs:

Generators have no main input signal and therefore solely generate an output.

Operators have a main input signal and therefore allow to take the input, process it somehow, and output the result.

Each ACs may also expose several wired parameters, which can be of any of the aforementioned types (including

AB). Figure 6.7 illustrates the GUI that would be created for an example operator AC, which takes as input an AB,

and outputs an AB based on a set of wired parameters. In the GUI we provide color-coded connection points so that

the user knows what type of signals can be connected together (heavily inspired by the Unreal Engine editor).

Figure 6.7: An example animation controller GUI with the signal color-coding using in Nutty Tracks.

Additionally a boolean parameter may also act as an On/Off Trigger to start or stop performing an action, or to

change the output logic of the AC (inspired by the bang of PureData6). In that case, the parameter is initialized

to False and an internal flag active is also set to False. At some moment the input may switch to True during one

single frame (e.g. when a specific event arrives from the AI), which internally triggers some logic to change the

output of the controller accordingly. Upon a change of the Trigger parameter to True, the active flag is also set to

True, and the Trigger parameter is immediately changed back to False. Within the GUI of an AC it therefore acts as

a button. While the internal active flag is True, the controller logic changes. If the active flag is still True and the

Trigger parameter is again set to True, then the active flag changes to False (as does the Trigger parameter), thus

changing back the logic of the controller output.

When Nutty Tracks is launched, the available Animation Controller types are loaded as plug-ins, and as such,

can be created separately from Nutty Tracks depending on our needs, and shared within the community. Therefore

6Pure Data: http://puredata.info (accessed January 12, 2019)

89

http://puredata.info


each Nutty Tracks instance may actually contain a different set of available Animation Controllers, and thus exhibit

different features from another instance, depending on the local plug-ins. This feature turns Nutty into not only a

highly flexible animation software for robots, but also a highly extensible one.

When a NAP is loaded, Nutty Tracks creates the Animation Layers specified in the NAP and instances all the

ACs and connections in each layer. Animation Controllers (ACs) are connected into a chain of execution (Figure 6.8)

that generates and composes animation either procedurally or using animations and postures that were pre-designed

(e.g. with Autodesk 3ds Max).

These chains of ACs are further composed into a hierarchy of layers that can be activated and deactivated during

interaction in order to either blend or override their animated degrees-of-freedom7.

Figure 6.8: The structure and flow of a NAP.

Each layer starts with an empty Ani-Buffer (or an efferent copy if the Heartbeat is being used), which is fed

to the first AC of the layer. Each AC processes the input AB and outputs the result to the next AC, or until it reaches

the end of the layer’s AC chain. The output of each layer is blended with the previously accumulated blended AB

following either an addition logic, or an override logic. In any case, only the dirty channels are blended. The result

of blending each two layers (the accumulated blended AB) is then fed as input to the next layer, i.e, except for the

first layer, each one is initialized with the blended result so far. The main chain of ACs is the one that connects the

layer’s start point until its end point (outlined in black).

Besides receiving an AB as input (mandatory for main chain ACs), an AC may optionally have some of its

parameters controlled by other ACs (in the figure outlined in blue), which compose the secondary AC chains.

The following is a list of Animation Controller examples. Many other ACs can be (and have been) implemented as

plug-ins to Nutty Tracks depending on the requirements of the target application.

Generators

• Float:float(value:float) outputs value as a constant float signal.

• RandomFloat:float(min:float, max:float) outputs a random float value between min and max.

• IntStep:int(step:int, stepSize:int) outputs the integer value step×stepSize (similar to what

MultiplyInt would produce, except that this AC works as a generator, i.e., it has no inputs, only parameters,

7Nutty Tracks: http://vimeo.com/67197221 (accessed January 12, 2019)
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and can therefore be used at the beginning of a secondary chain).

• Wave:float(amplitude:float, frequency:float, phase:float, shape:string) generates a sine or square wave

signal based on the value of shape, with parameters amplitude, frequency and phase.

Operators

• AddFloat:float(input:float, value:float) outputs input+value.

• MultiplyFloat:float(input:float, value:float) outputs input×value.

• AbsFloat:float(input:float) outputs the absolute value of input.

• IfFloat:float(input:float, test:float, ifTrue:float, ifFalse:float) outputs ifTrue if input=test, or ifFalse other-

wise.

• StrConcat:str(input:string, other:string) outputs the result of concatenating input and other.

• StrChanged:bool(input:str) outputs True whenever the input value changes between two frames, otherwise

outputs False. This logic is useful to control Triggers.

• WriteToChannel:AB(input:AB, channel:string, value:float, [speed:float]) invokes the

SetChannelValue on input to set channel’s value to value and optionally its speed to speed.

• AddAniBuffer:AB(input:AB, other:AB) adds the values of each channel in other to the input AB (and

returns the resulting AB).

• Posture:AB(input:AB, posture:string, additive:bool, weight:float) outputs an AB containing the values

specified by the channels in posture, either added to the input or overwriting them depending on the value of

additive, using weight to control the opacity of the blending.

• Animate:AB(input:AB, animation:string, speed:float, loop:bool, StartStop:bool, pause:bool) selects ani-

mation and starts playing it from the start whenever the StartStop Trigger is activated. The output advances

the frame of the animation based on the animation’s clock value multiplied by speed. When the animation

ends, it may either terminate, or loop until the StartStop is triggered again. The animation may also pause,

thus outputting the same frame of the animation. Whenever no animation is playing, it acts as a bypass, i.e.,

the input is directly routed to the output.

6.1.8 Nutty Plugins for each robot

In order to control a new robot, a specific NuttyOutput and BodyModel plugins may have to be developed. By

fitting into Nutty Tracks as a plugin, they are loaded during execution, allowing the user to select which output

(and robot) should be used. The BodyModel contains the robot’s hierarchical structure, along with parameters that

specify each joint’s axis of rotation and limits. It also contains the code that translates and executes a generic Nutty

Animation Buffer into the robot’s control API. The referential used in Nutty matches the one used by OpenGL8, and

joint rotations are generally specified as floating point degree angles. The zero-pose (when all angles are set to zero)

is considered to be having the robot facing straight, neutral and forward.

8http://www.opengl.org/ (accessed January 12, 2019)
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Figure 6.9: A real Keepon robot and range of execution of its Arduino-hacked servos.

Creating a Nutty Output Plugin for each new specific robot requires some work and expertise. However once it

is created, it can be reused throughout all future projects. Moreover, any plugin for any robot can be shared with

the community. The main advantage is, of course, that one might not need to develop the plugin for a robot if it is

already available locally or in some public repository. The second major advantage is that in case of a robot’s API

upgrade, only this plugin needs to be replaced, while all the animation data and logic programming remains.

Nutty-Keepon example:

We take as example the development of the Nutty-Keepon BodyModel plugin. Keepon was chosen because it is a

well-known and very simple robot. The first step was to understand how the Keepon is controlled in its own API.

It is especially important to outline what units and reference system it uses. The Keepon used in our system was

modified with controllable servos9 and connects to a computer using an Arduino10 board. Each servo is controlled

by specifying a target position which is represented by an integer value ranging from 0 to 180 for the Pan, Roll and

Tilt servos, and 0 to 100 for the Bop servo (Figure 6.9). For that we created an ArduinoOutput plug-in that could

take the animated values and send them to the Arduino through a USB-to-Serial connection.

Because in Nutty Tracks animation is normally specified as degree angles, the Nutty-Keepon’s robot representa-

tion sets all zero-angles (0°) to correspond to servo values of 90 for Pan, Roll and Tilt. As to Bop, it was kept as a

value ranging from 0 to 100, representing a percentage. To test and verify this, a virtual version of the Keepon was

made using Autodesk 3ds Max for modeling, and Unity3D11 for real-time rendering (Figure 6.10). Nutty Tracks

can also be used to control this virtual version by setting the used BodyModel to the Keepon (which is loaded from

the Keepon plugin), while using as output a built-in frame streamer based on JSON12, which send frames via TCP

sockets from Nutty Tracks to some Nutty-JSON-frame client (in this case the Virtual-Keepon application), instead

9Keepon Hack: http://hennyadmoni.com/keepon/ (accessed January 12, 2019)
10Arduino: https://www.arduino.cc/ (accessed January 12, 2019)
11Unity3D: http://unity.com/ (accessed January 12, 2019)
12JSON: http://www.json.org/ (accessed January 12, 2019)
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Figure 6.10: A screenshot of a Virtual-Keepon built in Unity3D with the angular range of movement of its degrees
of freedom. Note the mapping from the real values in Figure 6.9 to the angular coordinates used in Nutty Tracks.

of outputting them to the real robot through the ArduinoOutput.

Animatable CGI model of the robot

We used Autodesk 3ds Max as a host animation software to load a different type of plug-in version of Nutty Tracks.

Figure 6.11: The animatable CGI Keepon robot in Autodesk 3ds Max.
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This should not be confused with the Nutty plug-ins described on the previous section.

While the Nutty Tracks environment works by loading plug-ins, it can also become a plug-in itself, to a host

animation software such as 3ds Max. That means that instead of Nutty Tracks being ran as a standalone application,

it is programmed in Maxscript13 to run as a 3ds Max plug-in.

Because 3ds Max already provides a complete set of modelling and animation tools, an expert animator was able

to create a proper animation rig along with a 3d mesh of robot’s embodiment with a deformable modifier in order to

more accurately represent how the poses and animations look in the real robot (Figure 6.11). Also, because the

actual Nutty Tracks engine is running within 3ds Max, the animator can animate while watching the result rendered

on the real robot in real-time14. From 3ds Max, the Nutty Tracks plug-in allows to export both static postures and

animations by baking the selected timeline to an animation file format that was specifically created to hold Nutty

Tracks-loadable animations.

6.2 The Nutty Motion Filter (NMF)

When we take and adapt methods or techniques from CGI animation to robots, it is common to run into a particular

pitfall regarding the generated motion signal. In CGI, objects can move around freely with no physical or kinematic

constraints. As such it is easy to elaborate techniques that produce various kinds of motion, and to shape the

motion into the expected end-results, following on simple interpolation techniques, and even using stepped motions

(ones that are discontinuous). The fact is that virtual motion is, by nature, discrete, so it is always rendered in

discontinuous steps, no matter how small those are, even if any derivatives are also calculated.

In robotics however, the motors are physical and therefore enforce certain kinematic constraints which, if not

met, may result in errant and jerky motion. If one attempts to render a stepped motion on a robotic servo, the

resulting movement will necessarily be continuous, moving from its initial position all the way to the final position,

no matter how fast that motion might be. Even if we try to ignore it, inertia and other external forces will always be

playing a part on the resulting motion. Therefore motion generated for robotic use must comply to different norms

than the one produced for purely virtual applications.

In particular, a motion signal generated for a robot should be at least C2 continuous, i.e, containing a derivative

of order 2 or more. For servos and motors that power articulated structures in simpler robots, such a C2 signal is

typically enough (i.e., motion explicitly contains a limited acceleration component). In the case of more complex

robots, and in particular for motion in space, the motion signal that drives e.g. the path of a robot must be C3 (i.e.,

containing jerk, which is the derivative of acceleration), or even more (jounce is the 4th order derivative of motion,

i.e., the derivative of jerk). Furthermore, in addition to angular limits, the mechanics and motors used will typically

enforce a physical limit on each of the derivatives’ value, which, if violated, may result in either physical damage,

or in disorderly motion.

Figure 6.12 illustrates a simple motion signal with 3rd order derivatives between two positions (-6 and 6), along

with the limits of each of the derivatives. The signal input is referred to as the set-point, and in this case is a stepped

signal, which is the most basic type of signal that can be used for motion control. Recall that a stepped signal
13Maxscript: https://help.autodesk.com/view/3DSMAX/2017/ENU/?guid=__files_GUID_F039181A_C072_4469_A329_

AE60FF7535E7_htm (accessed January 12, 2019)
14Nutty Tracks with Keepon: http://vimeo.com/155593476 (accessed January 12, 2019)
14https://en.wikipedia.org/wiki/Jerk_(physics) (accessed January 12, 2019)
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Figure 6.12: A diagram illustrating jerk, acceleration and velocity of a C3 continuous motion signal that moves
from -6 to 6.14.

is very undesirable for robots, but is, in fact, the type of signal that is typically produced by a CGI application.

A CGI application typically runs at a high frame-rate (e.g. 60Hz), which generates motion in small steps of 1
60

seconds, which therefore becomes unnoticeable on screen. Therefore, it is generally not required to calculate all the

derivatives that ensure the smoothness of the motion. If such a stepped signal is, however, applied to a robotic servo,

it is likely to cause a lot of audible noise, along with jittery motion, given that, despite the stepped input, the motor

will in fact have to move through the intermediate positions between the current one and the set-point, and that

achieving that motion (velocity) will lead it to accelerate and de-accelerate between each step. Despite this issue,

various authors in the field of HRI have actually used simple position-based motion controllers to control small,

expressive robots motion controllers [104, 136, 22]. As long as the generated motion is slow enough, guaranteed to

seem smooth, and produced at a rate of at least 30Hz, the jittery effect may become mitigated or at least acceptable.

Throughout our work we have, at times, took that same, simplistic approach. However in the long term, we feel

the need for a proper motion filter that can be used as a bridge between any discontinuous, stepped motion such as

the one typically produced in CGI, and the C3 continuous motion required by robotics. Furthermore, because we

place such a strong focus on the character animation aspect, we also considered it desirable to have a motion filter

that would allow some kind of tweaking, in order to adapt the resulting motion not only to the robot’s embodiment,

but also to its character’s traits, such as mood, personality or emotion.

The Nutty Motion Filter (NMF), presented in this section, solves that problem by:

• Taking as input any C0 motion, in real-time, in a sample-by-sample basis (i.e, one sample at a time), in

irregular time intervals;

• Outputting a C1, C2 or C3 signal corresponding to the input one saturated by its velocity, acceleration and/or

jerk limits, at a steady output rate;

• Providing character parameters that can be tweaked to shape the motion produced, namely in terms of smooth

in/out, smooth damping, or if and how the motion should produce follow-through such as overshooting or

controlled damped oscillation;
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In addition to the contribution contained in this section, we have also made available an online simulator of the

Nutty Motion Filter15, which will allow the reader to further test and visualize the motion produced by the NMF,

using various different parametrizations and trajectories.

6.2.1 NMF Definition

The Nutty Motion Filter is defined as the function X(x(t), t(i), s), where x(t) : R+
0 → [Pmin, Pmax] is the motion

signal history, i.e., the previous positions that were output from the filter. The parameters Pmin and Pmax represent

the minimum and maximum values respectively. In e.g. a hinge joint, these would represent the angular limits of the

joint. x(0) is the initial position of the signal and must be specified. The function t(i) : N0 → R+
0 (shortened to ti)

represents the time at each sample i, such that 0 ≤ ti−1 < ti, and ti − ti−1 = ∆t, where ∆t is a fixed time-step,

calculated from the sample rate R, such that ∆t = 1
R . The sample rate should be chosen based on the requirements

and capabilities of both the robotic and computational systems, and must be at least equal to the desired output rate.

Therefore 30-100Hz are typically acceptable sample rates. Note that from this definition, i refers to the current

sample, and therefore the current time is represented by ti, while the time of the last sample is ti−1 and so on. The

set-point s is the new target position, and is used to calculate the induced velocity ẋ(ti) as specified in Equation 6.1.

Finally, x(ti) represents the output that will be computed of the filter at the current time (not in the history yet),

while s therefore represents the input. As such, ẋ(ti) must be calculated from s instead of x(ti).

ẋ(tk) =


s−x(ti−1)

∆t , if k = i

x(tk)−x(tk−1)
∆t otherwise

(6.1)

We start by dealing with the problem of limiting the position output of the motion using Equation 6.2. This

output saturation function Ω(ẋ, x, Pmax , Pmin , β) takes the induced velocity and the current output position and

prevents the induced velocity from moving the signal beyond the minimum and maximum values Pmax and Pmin .

As seen in the equation, the induced velocity is reduced by Ω as the current output position approaches either the

minimum or the maximum limits, while through the central portion of the motion range, the velocity is untouched.

This approach differs from a hard limiter on the output (clamping), by providing some control over the motion

before it reaches the position limit. Instead of causing a hard break, we can induce a de-acceleration up to a complete

stop, when the output motion is approaching its limits. However the saturation is only applied when the induced

velocity moves the signal towards the limit, i.e., if the current position is above its center (given by α), then the

velocity is only saturated when it is positive, and if the current position is below the center, the velocity will only be

saturated when it is negative. Without this remark, the velocity would become stuck at zero upon hitting the edge of

the motion range, as this saturation function would not allow it to move away from the it. The β parameter controls

the exponent of this de-acceleration, thus allowing to control how close to the limit the output is allowed to get

before being saturated. As β increases, the saturation becomes more similar to a hard clamping function. The effect

of different values for the β parameter is illustrated in Figure 6.13.

15http://www.tiagoribeiro.pt/nutty/motionfilter.html (accessed January 12, 2019)
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Ω(ẋ, x, Pmax , Pmin , β) =


ẋ ·

(
1−

(
x−Pmin−α

α

)2β
)
, if (x > α & ẋ > 0) | (x < α & ẋ < 0)

ẋ, otherwise

α =
Pmax − Pmin

2

(6.2)

(a) Output of Ω using β = 5. (b) Output of Ω using β = 20. (c) Output of Ω using β = 100.

Figure 6.13: Comparison of the output saturation function Ω given the minimum and maximum limits of [−10, 20],
using three different exponents β ∈ [5, 20, 100].

Additionally we define the derivative saturation function λ(x) : R→ R. This saturation function is individually

applied to each of the motion signal’s derivatives in order to enforce the physical limits that are imposed by the

robot’s embodiment, i.e., enforce that their absolute value does not exceed a given value limit k. This function

may e.g. apply hard limits (described in Equation 6.3 for exemplification purposes), or provide smooth limits as

described in Equation 6.4, where k ∈ R+
0 is the absolute limit value, such that |λ(x, k)| ≤ k, ∀x ∈ R. The latter

one (Equation 6.4) was chosen for the NMF, as it progressively saturates the input signal while it is approaching its

limit, in order not to induce a hard break when the limits are reached, thus alleviating the motion oscillation that

would be introduced through the use of the hard limiter.

In fact, using the tanh-limiter, the real limit is never reached, given that the input would have to be infinite for

it to happen (limx→∞ tanh(x) = 1). Being based on the hyperbolic tangent, this saturation function produces a

signal that is also continuously differentiable (contrary to λ′, which is C0).

λ′(x, k) = min(k,max(−k, x)) (6.3)

λ(x, k) =
k

2
· tanh(x/

k

2
) (6.4)

Using the equations of motion directly to calculate the final motion upon saturating the signal would still lead,

however, to some oscillation, especially in our case, where the filter digests set-points in real-time, unknowingly of

when the set-point and motion will come to a rest. The length and amplitude of such oscillation would depend on
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the filter order and the physical limit values.

We have however devised an additional velocity transfer functionH(v) (also referred to as stabilization function),

presented in equation 6.5 that softly brings the motion to a rest once it starts to approach its latest given set-point. The

transfer function is applied to the saturated induced velocity. This stabilization function uses two hyper-parameters

{σ, ρ}, representing smoothness and responsiveness respectively, that allow to tweak the filter, changing how

quickly it responds and how much it is allowed to oscillate. We call these the character parameters, as different

configurations for them will shape the motion differently. As such we argue that they can be used to model different

character traits, even when the same physical limits are enforced. The smoothness parameter σ will ease out the

oscillations. However, depending on other filter parameters such as the physical limits, fully easing out might

become too slow and make the motion seem too muddy and flat. That is where the responsiveness parameter ρ

comes in, which allows to precipitate the easing out, so that it may still be smooth, but faster, and thus, more

responsive. While these concepts of smoothness and responsiveness may seem antagonistic in the context of a

motion signal, they will be better explained further through illustrative examples.

H(v) =
v

2
·

(
tanh

(( |v|
1− ρ

)1−σ
− π

)
+ 1

)
, 0 ≤ σ ≤ 1, 0 ≤ ρ < 1 (6.5)

Based in the output saturation function Ω from Equation 6.2, on the derivative saturation function λ from

Equation 6.4, and the stabilization function H from Equation 6.5, we present below the final equations for either a

C3, C2 or a C1 NMF filter. Recall also the definition of ẋ(tk) from Equation 6.1. Higher order filters can also be

inferred, based on these equations.

Equation 6.6 contains the C3, or 3rd order NMF variant, defined as χ3(x, t, s).

χ3(x, ti) = x(ti−1) + λ(ψ3(x, ti), velocity_limit)

ψ3(x, ti) = ẋ(ti−1) + λ(
ξ(x, ti)− ẋ(ti−1)

∆t
, acceleration_limit)

ξ(x, ti) = ẍ(ti−1) + λ(
v·H(v)−ẋ(ti−1)

∆t − ẍ(ti−1)

∆t
, jerk_limit)

v = Ω(ẋ(ti), x(ti−1), Pmax , Pmin , β)

(6.6)

Equation 6.7 contains the C2, or 2nd order NMF variant, defined as χ2(x, t, s).

χ2(x, ti) = x(ti−1) + λ(ψ2(x, ti), velocity_limit)

ψ2(x, ti) = ẋ(ti−1) + λ(
v · H(v)− ẋ(ti−1)

∆t
, acceleration_limit)

v = Ω(ẋ(ti), x(ti−1), Pmax , Pmin , β)

(6.7)

Finally, equation 6.8 contains the C1, or 1st order NMF variant, defined as χ1(x, t, s).

χ1(x, ti) = x(ti−1) + λ(v · H(v), velocity_limit)

v = Ω(ẋ(ti), x(ti−1), Pmax , Pmin , β)
(6.8)
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6.2.2 Usage and Examples

In order to demonstrate and exemplify the usage of the NMF, we will be defining a set of example filters and example

input signals, for which we will then illustrate the transfer function of the example filters along with the output that

results from applying them to a given example input signal. Throughout this section, the graphs presented show the

position output that is produced by incrementally calculating the filter at each time-step t ∈ [0, Tmax], at a 60Hz

sample rate (steps of 1
60s). The figures also display the resulting velocity, acceleration and jerk (when applied).

Recall that the filter is calculated on a per-sample basis, and has no look-ahead information on the trajectory (which

allows it to be used in real-time applications). Therefore on each moment, the filter knows only what is the current

set-point, and what were the previous output positions and derivatives, thus the graphs presented are accurately

representative of the output that would be produced by each filter in a real-time application.

Example Filters

We start by defining a set of example filters in Table 6.1, organized into groups (Regular, A, B C, D & E) based

on their hyperparameters definition, i.e., the set of character parameters and physical limits. Within each group,

there are 1st, 2nd or 3rd order variants, and either may use the Tanh limiter function (Equation 6.4), or the Non-tanh

limiter function (Equation 6.3). Each example filter is designated by a name in the format Xβ
α , where α is the order

of the filter, and β is its hyperparameter group, followed by the symbol λ′ in case it does not use the Tanh-limiter

(the λ symbol is omitted otherwise). Although we chose and strongly recommend to use the Tanh-limiter with

the NMF, we will be demonstrating both versions in order to illustrate how it impacts the output of the filter. The

Regular filter represents one in which our stabilizing transfer function H is bypassed, and therefore it contains no

character parameters.

Example Input Signals

Figure 6.14 shows three different input trajectories that were used to demonstrate the filter across different conditions.

The first input ΦL illustrates a very simple linear trajectory in which the set-point for the position is moved

instantaneously from 5 to -5 at time t = 2.5, and then back to 5 at t = 7.5.
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Hyperparam Filter
Limiter Order Smooth Responsive Kinematic Limits

Group Name Vel. Accel. Jerk

Regular Wλ′

3 Non-tanh
3rd - - 20 100 10 000

W3 Tanh

A
XAλ′

3 Non-tanh
3rd

1.0 1.0

20 100 10 000

XA
3 Tanh

slow & smooth XA
2 Tanh 2nd

XA
1 Tanh 1st

B
XBλ′

3 Non-tanh
3rd

0.1 0.0XB
3 Tanh

slow & vivid XB
2 Tanh 2nd

XB
1 Tanh 1st

C
XCλ′

3 Non-tanh
3rd

0.1 0.0

90 700 50 000

XC
3 Tanh

fast & vivid XC
2 Tanh 2nd

XC
1 Tanh 1st

D
XDλ′

3 Non-tanh
3rd

0.95 1.0XD
3 Tanh

fast & smooth XD
2 Tanh 2nd

XD
1 Tanh 1st

E
XE

3 Tanh 3rd 0.95 0.2
fast & smoother

Table 6.1: Definition of filters used in the examples throughout the current section. As a mnemonic, the subscript of
the filter name represents its order (1, 2 or 3), while the superscript represents its hyperparameters group (3 distinct
sets A, B C D & E), along with an additional λ′ in case it uses the Non-tanh limiter. Additionally the Non-tanh
filters were shaded to improve readability.

(a) Example linear input ΦL as a highly discontinuous
input. (b) Example input ΦR as a random input.

(c) Example input ΦC as a stepped circular trajectory (in one dimension only).

Figure 6.14: Three example input trajectories, used to demonstrate the use of the Nutty Motion Filter.

It is intended to show how a filter responds to a large change in the input signal. The second input ΦR illustrates

a case in which the trajectory set-point is randomly adjusted at each second. It is intended to show how a filter

responds both to small and large changes in the input signal. The third input ΦC illustrates a case in which the final

trajectory was a circle. In this case we see only one of the two dimensions of the circular trajectory. This trajectory
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however, was discretized into 50 points, thus producing a small step at every 0.2 seconds for the 10-second long

trajectory. It is intended to emulate what in CGI would be seen as a smooth signal, but is, however, a stepped input.

Example Filters’ Transfer Function Response

Figure 6.15 contains four plots that illustrate the transfer function for different hyperparameter groups. The top

graphs refer to groups A and B, which both share one set of slower physical limits, while the lower graphs refer to

groups C and D, which share the other set of faster physical limits. The transfer function of B and C are actually

equal (same character parameters {σ, ρ}), however they consider different physical limits. This is reflected in the

plots, as each shows the output of H(x) being x ∈ [0,VelocityLimit ]. As such, x ∈ [0, 20] for groups A and B,

while x ∈ [0, 90] for C and D.

(a) Transfer function of group A(σ = 1.0, ρ = 1.0). (b) Transfer function of group B(σ = 0.1, ρ = 0.0).

(c) Transfer function of group C(σ = 0.1, ρ = 0.0). (d) Transfer function of group D(σ = 0.95, ρ = 1.0).

Figure 6.15: Plots of the different transfer functions specified by each hyperparameter group A, B C & D. The
domain of these graphs is x ∈ [0,VelocityLimit ], thus corresponding to [0, 20] for A and B, and to [0, 90] for C
and D. Also note that filters in groups B and C share the same character parameters, which results in the same
transfer function, confined only to a different domain. All graphs include three distinct points in the x axis as an aid
to interpret how they differ.

Output Examples using the Nutty Motion Filter

Through this section we will be comparing various graphs in order to illustrate how the filter’s response changes both

given a different set of character parameters, physical limits and input trajectory. We will also take the opportunity

to demonstrate how the tanh-based limiter differs from a non-tanh-based limiter, and even to demonstrate how a

given filter would behave without the use of our stabilizer function.

Using the simpler ΦL input, Figure 6.16 shows on the top left (a), the output of XA
3 , with the tanh-limiter, in

comparison with XAλ′

3 , on the top right (b), which uses the non-tanh limiter. The hyperparameters for this filter

group (A) make it what we would call a slow character, given that the motion takes some time to respond, and then

again to become fully stationary when the set-point has rested.

Observing the derivatives’ curves, the difference between the two variants becomes clear. In the first case, they

never hit their maximum value, and are all smooth, as they are based on the hyperbolic tangent. The output of the
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(a) Output of Filter XA
3 (with tanh limiter). (b) Filter XAλ′

3 (with non-tanh limiter).

(c) Output of Filter W3(H(x) = x, with tanh limiter). (d) Filter Wλ′
3 (H(x) = x, with non-tanh limiter).

Figure 6.16: Comparison of the effect of the tanh-limiter on the output the Nutty Motion Filter. Top row: The
output of filter XA

3 (a) compared to filter XAλ′

3 (b). Bottom row: The output produced by the NMF equations if the
transfer function was bypassed, i.e., making H(x) = x, while using the tanh-based limiter on the left (c), and a
non-tanh based limiter on the right (d). All four plots are produced from the simple input signal ΦL.

tanh-based variant becomes, however, slower, because the velocity was in general, confined to a lower value than in

the non-tanh version. This illustrates the implications of the tanh-limiter on the output motion - the system will,

in general, produce an output that is slower than physically allowed, by creating what we call a headroom16, that

allows to smoothly accommodate cases in which a very large change is induced by the input signal. Due to this

feature of the tanh-limiter, we differentiate the maximum value of a derivative, from its maximum sustained value.

Taking as example the first derivative, that maximum sustained velocity will be the absolute value at which the

velocity tends to hold as constant (about 5 in Figure 6.16a), in contrast with the real maximum absolute velocity (20

in the same Figure), which is the hyperparameter used to parameterize the filter, and includes the headroom.

For a reference, on the bottom row we also present the output of the signal that would be produced if we

bypassed our transfer function, i.e., making H(x) = x. In this case we see on the bottom left (c) that the signal

actually responds quickly with some slight oscillation when using the tanh-based limiter, and results in severe

oscillation when using the non-tanh limiter (bottom right (d)). Without the transfer function, the output only starts to

stabilize after it has reached the set-point. Therefore, we can observe, on the left-side, that the W3 filter accelerates

until it reaches a maximum velocity and continues that trajectory until it reaches the set-point. Only then does it

attempt to stabilize the output. Because it was going too fast and even overshot it, some oscillation was produced,

which however, was mitigated by the use of the tanh-limiter. However, on the XA
3 filter we see that the output

starts to de-accelerate much earlier in order to allow the output to stabilize smoothly without oscillating. These

graphs therefore show that although bypassing our transfer function is a possibility, we would have no control over

how fast or smoothly the filter responded, except by tweaking the physical limits, which would be an undesirable

requirement.

Figure 6.17 show a comparison of the same input signal using the 3rd order variants of the B, C and D filter

groups, again with both their tanh and non-tanh based variants. In this set of examples we have varied the character

16Borrowed from the concept of headroom used in digital audio. https://en.wikipedia.org/wiki/Headroom_(audio_signal_

processing) (accessed January 12, 2019)
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parameters and physical limits. When we parameterize the filter to provide a more vivid response as in filters

XB
3 (Fig. 6.17a) and XC

3 (Fig. 6.17c), we do encounter a slight oscillation effect. This oscillation is, however,

introduced due to our choice of the parameters, and is therefore a controlled oscillation, i.e., one that would allow

the character to exhibit some overshooting and follow-through animation, in order to convey a sense of weight and

inertia. If that oscillation is fully undesirable, we may parameterize the filter further to produce a fast and steady

response, as seen in filter XD
3 (Fig. 6.17e).

On the right side of the figure, the non-tanh limiter shows a faster response in comparison with the tanh-based

limiter version, but then after the output overshoots, it struggles to stabilize the signal quickly, thus leading to the

oscillation. It becomes clearer why the tanh-limiter became our choice for the NMF as it allows us to tweak the

shape of the output signal (as seen on the left), without introducing that undesirable oscillation.

(a) Output of Filter XB
3 (with tanh limiter). (b) Output of Filter XBλ′

3 (with non-tanh limiter).

(c) Output of Filter XC
3 (with tanh limiter). (d) Output of Filter XCλ′

3 (with non-tanh limiter).

(e) Output of Filter XD
3 (with tanh limiter). (f) Output of Filter XDλ′

3 (with non-tanh limiter).

Figure 6.17: Output of the 3rd order filter of groups B, C and D, using the simple input signal ΦL.

In Figure 6.18 we can see a comparison between three different filter orders for each of the hyperparameter

groups A, B, C and D using the same simple PhiL input. This figure allows to verify that the filter’s response

shape remains consistent across different orders, given the same character parameters and physical limits. What

also observe that the maximum sustained velocity increases as the filter order decreases, thus suggesting that we

should use the least order filter that the embodiment allows, in order to take the best advantage of the embodiment’s

kinematic capabilities.

In order to better conclude about how various filter parameters respond to different trajectories, we include some

additional sets of plots.

Figure 6.19 shows the plot for each hyperparameter group A, B, C and D, using the random input trajectory
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(a) Output of Filter XA
3 . (b) Output of Filter XA

2 . (c) Output of Filter XA
1 .

(d) Output of Filter XB
3 . (e) Output of Filter XB

2 . (f) Output of Filter XB
1 .

(g) Output of Filter XC
3 . (h) Output of Filter XC

2 . (i) Output of Filter XC
1 .

(j) Output of Filter XD
3 . (k) Output of Filter XD

2 . (l) Output of Filter XD
1 .

Figure 6.18: Comparison of the 3rd, 2nd and 1st order filters for hyperparameter groups A (first row), B (second
row) C (third row) and D (last row), using the simple input signal ΦL.
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ΦR. In this trajectory we see how each filter responds both to large and small set-point changes. Filter XA
3 is too

slow to actually reach the set-points through half of the trajectory. Filter XB
3 performs better there, but adds some

overshooting which can be seen as a small bump. Filter XC
3 is too loose, and although it reaches the set-points

quickly, it introduces not only overshooting but also some oscillation. Filter XD
3 illustrates what we consider as a

fast and steady response, with nearly no overshooting.
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(a) Output of Filter XA
3 using the random input signal ΦR.

(b) Output of Filter XB
3 using the random input signal ΦR.

(c) Output of Filter XC
3 using the random input signal ΦR.

(d) Output of Filter XD
3 using the random input signal ΦR.

Figure 6.19: Comparison of hyperparameter groups A, B, C and D, using the random input signal ΦR.

Finally, Figure 6.20 shows the plot for each hyperparameter group A, B, C, D and additionally E, using the

circular input trajectory ΦC . These plots how each filter responds to an input signal that is continuously changing in

small steps - which in some cases is actually a challenge. Most of the remarks from the previous set of plots (Figure

6.19) also apply here. However we have added the additional XE
3 filter as a version of XD

3 with a lower responsive

parameter. The purpose of this final set of plots is to show that not only will the selected character parameters

depend on the intended shape and smoothness of the signal response, but must also consider how the input signal

will be generated and fed to the filter.
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(a) Output of Filter XA
3 using the circular input signal ΦC .

(b) Output of Filter XB
3 using the circular input signal ΦC .

(c) Output of Filter XC
3 using the circular input signal ΦC .

(d) Output of Filter XD
3 using the circular input signal ΦC .

(e) Output of Filter XE
3 using the circular input signal ΦC .

Figure 6.20: Comparison of the hyperparameter groups A, B, C, D and E, using the circular input signal ΦC .
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6.2.3 Comments and Remarks

Throughout this section we have presented the Nutty Motion Filter, which uses a composition of various transfer

functions to allow an open-loop motion control system to smoothly interpolate and stabilize a given input signal

even when that signal is highly discontinuous. Various choices were made which however, should not fully enclose

this filter as a sealed solution. We have described the filter as various separate components, although one may

implement a more optimized version by combining them in a different way. In addition, various options may be

considered regarding e.g. the limiter function. While the tanh-based limiter became our choice, it was a balanced

decision, i.e., it provides steady, controllable results, with no tweaking required. For other particular applications, it

is important to emphasize that one may choose, explore and develop other types of limiter functions that better suite

their requirements.

A final and important remark that must not be left uncommented is on the use of limiters with mobile robots

that are operating in 2D trajectories. While it may seem obvious for a person with a strong background in robotics,

we want to clarify that in cases where the X and Y directions are controlled separately, they must typically be

limited together, in order to provide a limiter on the robot’s actual linear velocity (which is made up of x and

y) This means that given a 2D vector [ẋ, ẏ], representing the velocities in both dimensions, one would have to

calculate the magnitude of the resulting linear velocity vector, apply the limiter to that resulting vector only, and then

proportionally saturate each of the two components, in order to limit both dimensions in a way that the resulting

linear velocity does not exceed the specified limit. The same principle would apply for any other degrees of freedom

that jointly operate to perform 2D motion (or even more).

6.3 ERIK - Expressive Robotics Inverse Kinematics

One common and basic social robot behaviour that we take as an example is face-tracking, which directs a robot’s

gazing towards the face of the human with whom it is interacting. For a simple robot, e.g., neck with two DoFs,

it is easy to implement face-tracking by extracting a vertical and horizontal angle from the system’s perception

components (e.g. camera, Microsoft Kinect). These two angular components can directly control the two individual

motors of the robot’s neck. However this is a very limited conception of face-tracking behaviour, and also a

very limited form of gaze control in general. Gazing behaviour can also be compound, by featuring not only

face-tracking, but also used deictically towards surrounding objects, and in conjunction with other static or motive

expressions (e.g. posture of engagement, nodding in agreement). Furthermore, one must consider that compound

gazing behaviour should also be adopted for use with complex embodiments that feature multi-DoF necks, such

as industrial manipulators, by considering the manipulator’s endpoint to take on the expressive role of being the

character’s head, i.e. taking inspiration on an animated snake.

Within the goal of this thesis, we are focusing on the possibility of animating a robot such as an expressive

manipulator, containing a chain of an arbitrary number of unidimensional degrees of freedom.

Animating such a robot within an interaction with humans would pose at least the requirements of having it able

to simultaneously be expressive, while tracking an orientation constraint (e.g. gaze target). This is not however, a

trivial problem. While it would be possible to control an expressive posture on the robot through Forward Kinematics

(FK), and while an inverse kinematics (IK) algorithm could separately be used to provide it with gaze-tracking
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ability, the blending of both an expressive posture (FK) and an IK solution is not possible using a simple operator.

This becomes especially aggravated by the fact that a robot has physical constraints that limit its range of

movement, and that the final solution should be in joint-angle space (and not in position-coordinates as can be done

with techniques from CGI). Another burden is to ensure that our tools and algorithms would still be able to provide

solutions for any type of embodiment, and not just for the one we use.

This problem has posed as a hindrance to autonomous social robots’ ability to properly express their underlying

intention, when their actions are performed by an articulated structure. We therefore outline a solution to it by

creating an animation algorithm capable of blending FK and IK. Such animation algorithm would be solving for

two constraints which in most cases, are not simultaneously satisfiable: the expressive posture of the robot, i.e. the

configuration of angles for each degree-of-freedom (DoF) that results in a given posture; and the global orientation

of the endpoint node, i.e. the configuration of angles for each DoF such that the endpoint node faces towards a

given orientation (in world coordinates). Moreover, such algorithm must be fast in order to provide a responsive

interaction with humans, the resulting motion must seem smooth and continuous in order to exhibit naturalness, and

we also want it to be extensible and adaptable to other embodiments.

Given this challenge, we have defined the following features to be met by such algorithm:

• Simultaneously solve for a given posture configuration and endpoint orientation;

• Prioritize the endpoint orientation constraint by allowing for distortion of the expressive posture;

• Keep the distortion of the target expressive posture as minimal as possible. Our definition of minimal is that

although the expressive posture will not maintain its original form, it should be distorted in a way that its

intended expressive meaning still holds;

• Fast solving for real-time applications (e.g. \50 solutions per second on a common computer);

• Per-frame solving to allow continuous tracking of subjects (i.e. in contrast to full trajectory pre-planning);

• Provide continuous solutions, i.e. subsequent solutions should minimize jitter or broken motion in regards to

previous solutions;

• Support any configuration of kinematic chains, containing an arbitrary number of single-DoF nodes, rotating

each about an arbitrary axis with fixed angular limits;

• Be extensible for full-body solutions, i.e. solving multiple sub-chains for multiple endpoints (e.g. humanoid

embodiment with two individually controlled arms);

Our belief is that a solution to this problem will allow to create social robots that are more capable of conveying

their social intentions and overall motivation to human interactors, while performing other tasks such as gazing or

pointing.

This section presents and describes ERIK, a heuristic inverse kinematics technique that allows a virtual or

robotic character with an arbitrary articulated embodiment to convey and hold a given expressive posture while

facing a given direction during an interaction. It is able to provide many solutions per second using a standard

computer, allowing it to be used for interactive applications.

The effort to design expressive behaviours for interactive characters using ERIK is also minimal. Animators can

design single front-facing postures for any given embodiment, which are used as input to the algorithm, with no
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pre-computing or offline training required for any new posture or embodiment. The algorithm is then able to take

that posture and warp it in real-time, so that a given end-point is facing any given orientation, while respecting the

embodiment’s kinematic constraints, and while attempting as best to hold the overall shape of the posture.

Furthermore, ERIK was also developed to support its use with robots. As such, its output consists of a list of

rotation angles, one for each joint, which can be used either in virtual or robotic applications. The solver computes

on a per-frame basis in order to easily fit into a typical animation cycle, i.e., it produces one full-body solution at a

time, and not a pre-planned motion trajectory.

Figure 6.21 illustrates the work-flow of a Nutty-ERIK system. ERIK can either be used as a component of an

Interactive Application such as a game, VR/AR application, or a robotic AI, or alternatively, it can be used as a

plug-in for an animation authoring tool. In the latter case, due to its real-time nature, it allows artists to creatively

explore the design of expressive postures for real robots in real-time, and directly in the real, physical embodiments.

This animator-inclusive workflow follows on the work initially proposed by [22, 121].

Figure 6.21: The ERIK workflow, illustrated as a particular version of the Nutty Pipeline . Animators can create
expressive postures using typical animation tools. Those expressive postures can be selected by an AI or character
controller in an Interactive Application to drive an animation engine which, through the use of ERIK, is able to
perform the selected posture towards a selected orientation (e.g. from a user-perception component). Alternatively
(dotted arrow), ERIK can also be used by a plug-in for the animation tool, to allow live authoring of postures on real
robots i.e., the animators are able to test the result of the postures in a given robot directly and in real-time.

ERIK can be used to create tools and character animation engines directed at animation artists, so that they can

take a stronger role in the development of autonomous, interactive, computer-animated characters, be them virtual

or robotic. By bringing the artists closer to the AI - or the AI closer to the artists - we expect ERIK to prove as a

strong technological contribution for the creation of better and more life-like interactive characters, in particular

within immersive and emergent applications such as the ones based on VR, AR and robotics.

In many cases, the algorithm will be solving for two constraints that are not simultaneously satisfiable: the

expressive posture of the character, i.e. the configuration of angles for each DoF that results in the given posture; and

the global orientation of the end-point node, i.e. the configuration of angles for each DoF such that the end-point node

faces towards a given orientation (in world coordinates). This means that depending on the character’s embodiment,

on the target posture, and on the target orientation, the resulting pose may either fully satisfy both goals, or fully
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satisfy the orientation goal while partially satisfying the posture goal. Due to mechanical limitations, there will be

many cases in which it is physically impossibly to solve both goals. Given that ERIK aims at autonomous characters

that interact with humans, it will prefer a pose that complies with the given orientation target (where a human is

expected to be), while allowing the posture to fall short of the target expression. This design decision makes ERIK

most appropriate for situations in which the characters perform a merely expressive role, where the control of its

embodiment is not crucial for safety or successful completion of tasks, such as robotic manipulation of real objects.

From our evaluation, we found that ERIK does in fact solve most cases successfully for both the posture and

orientation goals, as long as the embodiment contains enough DoFs to achieve it. ERIK is an iterative algorithm for

expressive kinematics that was developed with articulated structures of 1-DoF joints in mind, such as real robots,

and in particular, robotic manipulators. It provides a joint model that allows to use techniques initially developed

for CGI and not for robotics, such as FABRIK or other IK techniques, which solve for Cartesian (position-based)

solutions, instead of angle-based solutions as is commonly used in robotics.

Our algorithm was initially developed towards the problem of expressive gazing, in which a given embodiment,

composed of an articulated kinematics chain, is required to orient its end-point towards a target, while also providing

expressive control over its posture using expert body knowledge provided by character animators.

Although technically an iterative algorithm, we may also describe ERIK as a multi-phase super-iterative

algorithm given that for each set of goals, it solves them iteratively, while using other iterative techniques within

each of its iterations. In particular within each iteration it may solve small steps using the popular CCD technique,

and will use the custom BWCD technique, which is an adaptation of the CCD algorithm, tailored to simplify some

of the steps within ERIK.

6.3.1 From FABRIK to Expressive Robots

The major portion of the algorithm was inspired by the FABRIK technique [89]. While CCD is commonly used in

isolation to solve the IK problem required for a given end-point to face a given direction, its solutions suffer from

discontinuities and un-natural poses. In this aspect, FABRIK performs significantly better, which makes it more

appropriate to be used for expressive motion. However, by operating on the Cartesian level, it cannot ensure reliable

orientation constraints. Given a set of parallel, 1-DoF joints as we commonly find in robots, it frequently runs into

indeterminations, given that a Cartesian representation of a skeleton can not properly represent induced parallel

rotations (i.e., twist). As the authors point out, that results in deadlock situations [89]. They propose that deadlocks

can be detected by checking if the distance between the target and the end-point is becoming smaller on each

iteration. If not, a deadlock situation is detected. We have imported this concept into ERIK, although we have called

these the Nonconvergence cases, for which we provide additional Nonconvergence Tricks. Our dealing if the

Nonconvergence cases is expressly different, given that under constraints, we must allow the end-point orientation

to temporarily move away from the target in some situations, while it is e.g. twisting its root joint to readjust the

whole chain to allow reaching the goal, which makes the Nonconvergence detection less trivial. Furthermore, the

Tricks we apply must consider the fact that we expect to hold the given expressive target posture as best as possible,

while in FABRIK, one of the proposed solutions when the target is detected to be out of reach, is solely to place

the whole chain in a straight line (which is OK if we do not care for the resulting posture). These limitations have

restricted FABRIK’s use for robotics, as it was especially formulated for motion-capture of virtual humans, and on
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IK problems for position-based targets. Still, FABRIK provides various benefits, such as supporting full-body IK

i.e., multiple end-points, non-leaf end-points, closed loops, and prismatic (i.e., sliding) joints. Therefore, we chose

FABRIK as the starting point for ERIK so that in the future we may have the chance to replicate and adopt those

same features.

6.3.2 BWCD: Backward Coordinate Descent

The BWCD is an IK technique that was specifically created to solve some of the intermediate steps within ERIK.

Its execution is similar to CCD’s except that execution starts at the root of the chain instead of at the end-point.

Therefore the bulk of the warping introduced by BWCD will be concentrated at the bottom of the chain, while CCD

tens to introduce it at the top of the chain. The formulation of BWCD was necessary to allow warping postures

towards an orientation goal, with preference for having such warping at the root of the chain. That is because by

concentrating most of the warping at the root, we expect to maintain more of the shape of the posture through the

rest of the chain, up to the tip. Because the warping occurs at the root, which is typically less constrained (such as in

a turret, or a pan-tilt mount), BWCD can return an acceptable solution in a small number of iterations (e.g. <5).

Therefore, while being an iterative algorithm, it is fast enough to be used as an internal step within ERIK.

Within ERIK, BWCD is used to operate both on Postures and on Solutions. The Posture version solves it in

Cartesian space and does not enforce joint rotation limits. The Solution version runs in angular space and enforces

joint rotation limits.

6.3.3 The ERIK Pipeline

Figure 6.22 shows the main components of ERIK: the inputs Target Orientation and Posture, the Joint Model,

the Warp Posture phase, the Solve for Goals phase and the Motion Filter.

ERIK takes in a Target Orientation, along with a Target Posture, that are to be achieved by the given skeleton,

which is the representation of the embodiment’s structure, depicted as the Joint Model. The Target Posture is first

naively warped using BWCD, so that its end-point is pointing towards the target orientation. This step, however,

breaks the kinematic constraints. Therefore ERIK moves on to the FABRIK-inspired iterative portion that starts by

running a Forward Phase, and a Backward Phase (inspired by FABRIK’s own Forward and Backward phases).

After the Backward phase, the candidate solution exhibits a shape as close as possible to the given Target Posture,

and respects all kinematic constraints, but its end-point orientation may not match the given Target Orientation.

Upon testing the candidate solution, if it is within the acceptable parameters, then the solution is returned. Otherwise,

the BWCD algorithm is used to orient the solution’s end-point towards the given Target Orientation. This step

will likely cause a slight deformation to the intended posture. If after this step, the new candidate solution is still not

acceptable, then ERIK will proceed with a new iteration, starting from the current candidate solution. Before doing

so however, it may perform some Noncovergence Tricks, in case the algorithm detects that the candidate solution

errors are not properly minimizing.
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Figure 6.22: ERIK Pipeline. The given Target Posture and Orientation are first warped using BWCD, so that the
posture’s end-point is aiming towards the Target Orientation, without enforcing joint limits. The result feeds the
first iteration of the Iterative portion, which, through various phases on each iteration, returns the final solution. The
Joint Model containing the skeletal information and auxiliary operations. The final solution runs through a motion
filter to ensure smooth, continuous output.
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Nonconvergence Tricks

Upon detection of a non-converging execution, we attempt two approaches, which we call tricks, to attempt to get

the solution to converge. The first attempt is to add a small offset to the target orientation. It may be the case that

the specific target orientation may not be mechanically achievable, and that the algorithm will deadlock trying to

achieve it. In that case we attempt to perform a random disturbance of a pre-specified magnitude ΛDisturbanceθ on the

Target Orientation, and proceed to the next iteration using the new target.

If the execution comes again to a non-convergence detection, then we attempt to run the CCD technique, using

the current intermediate solution as the initial state. This CCD step will likely disturb the expected resulting posture,

but will ensure that the end-point is pointing towards the target as best as possible. Given that we take the current

solution as the initial state, it is, however expected that the introduced posture disturbance is minimal.

If still this CCD step was unable to provide an acceptable solution, then it is likely that the intermediate solution

has become locked due to joint constraints, and that CCD will not be able to solve it. In that case, and only in that

final case, will we disregard the target posture, and therefore run the CCD technique again, but starting from the

zero-pose.

6.3.4 The ERIK Joint Model and LALUT

In order to allow the use of a FABRIK-based approach with robot-oriented calculus, we started by developing the

ERIK Joint Model (EJM) that contains all the required information and operations.

Figure 6.23 shows the unit-sphere EJM space of a joint, where the ~Parent segment is connected to the link’s

~Segment, which can rotate about a ~RotationAxis, within the angular limits of [Minθ,Maxθ].

Vector ~t is a target vector, which specifies the direction where we wish to compute a solution for the joint. Note

that the ~Parent was purposely misplaced so that it ends at the origin, to help to visualize this representation as a

segment hierarchy, and that all the vectors used are normalized to unit length. Note also that we suggest always

considering that the ~Parent is aligned with the ~y of the child’s local space, although other conventions can be used.

The coordinate axes on the top-right corner of Figure 6.23 should help to clarify the convention in case of any doubt.

The goal of the EJM is to provide answers to the following question: What angular rotation do I need to apply

to the local joint, if I know the joint’s rotation limits, and if I know that the Parent joint is a Twister, along with how

much it can twist?

Taking figure 6.23 as example, and note the segment ~S′. In order to point the ~Segment to ~t, the EJM provides

the rotation of αswing on ~Segment, resulting in ~S′, followed by βtwist on ~Parent. This would be because the segment

wound not achieve ~t through a positive rotation due to its rotational limit Maxθ. Therefore it needs to locally rotate

away from the target, and then rely on its parent’s Twist capabilities to finally turn to the right direction.

The αswing value is calculated using a pre-computed look-up table which we call the LALUT. First, the target

direction ~t is turned into a single decimal number we call a latitude λ, which is calculated from Equation 6.9.
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Figure 6.23: The ERIK Joint Model. A joint is defined as having its origin at the tip of its ~Parent segment, and in
this coordinate frame, to contain its own ~Segment, which can rotate about a given ~RotationAxis, within an angle that
lies in the range {Minθ,Maxθ}. In order to achieve a given target t, which is defined in its own local space, it can
perform a local rotation of αswing, bringing its segment to S′, and then have its parent joint perform a twist of βtwist
in case the parent is a twister joint.

λ(~t) = σ(~t) ·
~t · ~P + 1

2
.

σ(~t) = sign(~t · ~POA)

~POA = ~R× ~P (only computed once)

(6.9)

This λ is then used to query the LALUT, which therefore stands for LAtitude Look-Up Table. Additionally some

auxiliary vectors are computed only once on joint initialization following Equations 6.10

~OA =


~R× ~S , if ¬(~R ‖ ~S)

~R× Ŷ , else if |~S · X̂| = 1

~R× Ẑ , else

~POA =


~R× ~P , if ¬(~R ‖ ~P )

X̂ , else if ~R · X̂ = 0

Ẑ , else

(6.10)

Figure 6.24 illustrates the concept of latitude. Given one of the target vectors shown, the latitude will be a number

between zero and one, which is inspired on the concept of geographic latitude. The south pole corresponds to zero

(0.00), while the north pole corresponds to one (1.00). The unit sphere is also split in two vertical hemispheres

using the plane defined by the vectors ~RotationAxis and ~Parent. Given a target vector ~t, the hemisphere it lays in is

is used to define the sign of the latitude (positive or negative).
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Figure 6.24: The latitude coordinate system. Given a target, represented by the yellow arrows, the corresponding
latitude λ is calculated following Equation 6.9. A target pointing at the south pole has a λ of zero (0.00), while one
pointing at the north pole has a λ of one (1.00). The λ will be positive or negative depending on if it lies in the right
or left hemisphere, which is defined by the plane ~RotationAxis× ~Parent.

The Latitude Look-Up Table

The LALUT serves as a look-up table (LUT), which consists of an indexed array, stored in memory, for which we

can associate a value y to an index x. For intermediate values of x that are not present in the table, it should be able

to compute the corresponding values of y by interpolation. It is computed only once, on initialization, given that the

kinematics of a joint are not expected to change in run-time (i.e., the specific vectors ~Parent, ~Segment, ~RotationAxis

of the system remain the same throughout execution).

This table is computed by iterating a variable a from αmin to αmax, in small steps (e.g. π
180rad). The size of

the step can be adjusted depending on the needs, with a smaller step requiring linearly more initialization time,

but providing higher accuracy. In any case the total execution time should be less than a few seconds on a typical

computer.

On each iteration, we rotate ~Segment using a quaternionQlutStep = AxisAngle( ~RotationAxis, a), which produces

a new vector ~u. We then store the value of a in the LALUT, indexed by its latitude λ(~u). Conceptually, this means

that the LALUT stores, for a given latitude, the local angle that resulted in it.

Because the LALUT is stored for two hemispheres, it actually contains a positive LUT and a negative LUT. An

entry is placed in either the positive one or the negative one depending on the sign of σ(~u). Later, for retrieval, the

same procedure is followed: Given a target t, a latitude λ and a sign σ are calculated from Equation 6.9. If σ is

negative then the negative LUT is queried for λ, otherwise the positive one is queried.

6.3.5 ERIK Parameters and Model Specification

The algorithm relies on a set of Parameters (Π) used to define the execution goals, which are expected to change

frequently (even between each solution), along with a set of Hyperparameters (Λ) which should remain unchanged

throughout the execution, and are used to configure the algorithm execution. Table 6.2 outlines the main Parameters
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and Hyperparameters required for ERIK, along with the symbol by which they shall be represented throughout the

document, and especially within Appendix A.1 (Algorithmic Specification).

Table 6.2: Description of Parameters and Hyperparameters of ERIK.

Symbol Meaning

Π ERIK Parameters
Λ ERIK Hyperparameters

Πτ ,Π~τ Target Orientation, Target Direction
ΠΨ Target Posture

ΠΘt−1
Previous Solution

ΛSk Skeleton Information (EJM)
ΛSki ith joint counting from the root17

NDoFs Number of DoFs of the Skeleton
Λφ Error Function

ΛMaxERIKIterations Maximum iteration count
ΛMaxCCDIterations Maximum iteration count for CCD (and BWCD)

Λfoo Value of Hyperparameter foo
ΛΞbar Extension bar is active
Θε Solution’s error value

Table 6.3: List of joint information, given a joint k of a Solution (Θk), a Posture (Ψk), or a Skeleton (Skk). Let Φ
represent either a Solution or a Posture.

Symbol Meaning

ΨEE,ΘEE A Posture or Solution’s End-Effector joint.
~kσ Joint’s (child) Segment.
~kRA Joint’s Rotation Axis.
~kOA Joint’s Orthogonal Rotation Axis.
~kPOA Joint’s Parent-Orthogonal Rotation Axis.

Φkρ World-Position of joint.
Φkθ Local angle of joint.
ΦkQ World-Frame (basis) of joint (Quaternion).
ΦkL Local-Frame orientation transform (Quaternion).
ΦkΩ

World-frame orientation transform (Quaternion).
~Φkd Direction where the joint segment is pointing at (unit vector).

Besides the Parameters and Hyperparameters, ERIK requires the concept and model of Solutions (Θ), Postures

(Ψ) and Links (K). The Solution object is used both for intermediate and candidate solutions, used internally during

the execution of ERIK, and also to represent initial and final solutions provided to and by the algorithm. The Posture

object is similar to the Solution one, except that it is used to represent a target pose, which may be represented either

based on a set of angles, or a set of positions for each joint, and which may or may not comply with the mechanical

limits of the Skeleton. In case of Solutions, they contain kinematic information that adheres to the joints’ kinematic

limits.

Additionally, candidate and final solutions contain an error value Θε which represents the result of the error

function Λφ(Θ). The Skeleton information object contains the set of Links, along with information such as which is

the root or end-point joints of the chain.

Both Solutions and Postures contain joint information represented in a similar way. The joint fields used by both

are listed in Table 6.3, while some additional algebraic definitions are listed in Table 6.4. The computation of some
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of the fields from Table 6.3 is explained in Equations 6.11a–6.11c. Let us clarify that the orientation transforms

ΦkL and ΦkΩ
represent the orientation to which the joint’s segment is facing, after applying its own local rotation.

Also note that an alternative to Equation 6.11c would be to take the ~y axis of ΦkΩ
’s corresponding matrix.

ΦkL = QAxisAngle( ~kRA,Φkθ ) (6.11a)

ΦkΩ
= ΦkQ · ΦkQL (6.11b)

~Φkd = QAxisAngle(Ŷ ,Φkθ ) (6.11c)

Table 6.4: Definition of mathematical symbols used in the algorithms.

Symbol Meaning

Qθ, Qv Scalar and Vector parts of quaternion Q
QM Rotation Matrix that corresponds to quaternion Q.
Qk Axis k of Q’s rotation matrix QM , k ∈ {x, y, z} (simplification of QMk

).
X̂, Ŷ , Ẑ Unit-vectors in the X, Y or Z directions.

6.3.6 The Error Function

To measure the quality of the solutions produced by ERIK, we established two concurrent error measures, εOrientation

and εPosture. These are concurrent measures because in most cases, minimizing one results in not minimizing the

other. Through successive iterations, the algorithm attempts to minimize the error function Λφ (Equation 6.12),

which calculates a weighted sum of the two measures. The error threshold ΛThresholdε specifies when the result of

the error function is small enough to be acceptable (for which it can successfully terminate and return the computed

solution). In all cases, any value that measures error lies within the interval [0.0, 1.0]. The orientation error function

φOrientation calculates the εOrientation for a given solution, while similarly, φPosture calculates its εPosture.

Λφ(Θ, τ,Ψ,Λ) = ΛOrientationErrorWeight · φOrientation(ΘEEΩ , τ,Λ) + ΛPostureErrorWeight · φPosture(Θ,Ψ,Λ) (6.12)

These two error functions are defined in equations 6.13 and 6.14, and further specified in the appendix in

Algorithms 5 and 6. The posture error function φPosture measures how different the posture of a solution is, in shape,

from the target one. It does so by measuring the local angular deviation between each non-twister solved joint, and

target joint, and is designed to punish more for deviations closer to the end-point than closer to the root, which

supports our preference.

In equations 6.14 and 6.15, α is a shortcut for the aggravation factor ΛErrorAggravation.

17Thus the root joint is ΛSk1 , the end-effector is ΛSkN , and the Superpoint (Section 6.3.8) will be ΛSkN+1
.
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φOrientation(ω, τ,Λ) =

 min(Z(τ, ω), Z(τ,QAA(RotVQ(Ŷ , ω), π) · ω)) , if ΛΞSymmetricEndpoint

Z(τ, ω) , otherwise

Z(τ, ω) =
min(|τ − ω|, |τ + ω|)√

2
·

(6.13)

φPosture(Θ,Ψ,Λ) =
1

ΛPostureNorm

NDoFs∑
i=1

 0 , if IsTwister(ΛSki)

αi · |(1− 1+Υ(Ψ,i)
2 )− (1− 1+Υ(Θ,i)

2 )| , otherwise

Υ(P, i) =


‖ΛSkRootσ

‖ · ‖P(i+1)ρ − Piρ‖ , i = 1

‖Piρ − P(i−1)ρ‖ · ‖P(i+1)ρ − Piρ‖ otherwise

(6.14)

The Hyperparameter ΛErrorAggravation (used in the Equations 6.14-6.15 as α) defines how worse the punishment

becomes, as the function calculates deviations closer to the end-point. A value of 1.0 would mean that the punishment

is the same across the links. A value of 2.0 means that a given deviation amount at one link would result in twice

the error value, one level up the kinematic chain. We can see that the resulting value of φPosture is divided by the

ΛPostureNorm, which reduces the final sum to a value in the interval [0.0, 1.0]. This hyperparameter is calculated once

on the skeleton’s initialization and given by Equation 6.15.

ΛPostureNorm =

NDoFs∑
i=1

 0 , if IsTwister(ΛSki)

αi otherwise
(6.15)

Depending on the target application, and the embodiment used, one can use different values for the error

measure weights, and for the error threshold. We share, as an example, that for a 5-link robotic manipulator

aimed at entertainment applications, where expressivity and responsiveness is more important than precision, we

achieved good results using an error threshold of 0.04, with a weight of 1.0 for ΛOrientationErrWeight and 0.2 for

ΛPostureErrWeight. As such, we took these values as a reference when evaluating the algorithm as we will report further

in the appropriate section of the document (Section 6.3.10).

6.3.7 The Nutty Motion Filter

The final component of the pipeline is the Nutty Motion Filter, which we refer to as the NMF and has been

extensively described in Section 6.2. This piece’s function is to interpolate successive ERIK solutions, to ensure

that the final produced movement is smooth and continuous. Furthermore, it can shape the motion to make it

appropriate for use with robots.

The NMF allows to define limits for the velocity, acceleration and jerk18 of the signal. Additionally it includes a

set of tweaking parameters that can be creatively explored to provide different characteristics to the motion, such as

allowing it to respond fast, as in a light character, or respond very slowly and with a lot of inertia, as in a heavy

character.

18Jerk is commonly used in robotics. It is the derivative of the acceleration. Think of it as the speed at which the acceleration changes.
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The motion filter is calculated individually for each joint, at the end of each frame in the animation engine’s

animation cycle, which is not necessarily synchronized (and should not be) with the ERIK solver engine. We

recommend not attaching these given that the ERIK cycle may have inconsistent frame times and drop to a lower

rate than is expected in the animation cycle.

The output of the NMF on each frame is given by the function X(x(t), t(i), s), where x(t) : R+
0 → [Pmin, Pmax]

is the motion signal history, i.e., the previous positions that were output from the filter. The parameters Pmin and

Pmax represent the minimum and maximum values respectively (e.g. angular limits). Note that each joint may define

its own limits and motion parameters for the NMF. x(0) corresponds to the initial position of the joint and must be

initially specified. The function t(i) : N0 → R+
0 (shortened to ti) represents the time at each sample i, such that

0 ≤ ti−1 < ti, and ti − ti−1 = ∆t, where ∆t is a fixed time-step, calculated from the animation output rate R,

such that ∆t = 1
R . Note that from this definition, i refers to the current sample, and therefore the current time is

always represented by ti, while the time of the last sample is ti−1 and so on.

Finally, the set-point s is the new target position, and is used to calculate the induced velocity ẋ(ti). With this

consideration, x(ti) is used to represent the output that will be computed of the filter at the current time (not in the

history yet), while s therefore represents the input. As such, ẋ(ti) must be calculated from s instead of x(ti).

Equation 6.16 contains the explicit definition of the NMF equations. Within them we can find the various motion

parameters, which we follow to explain.

The β parameter controls the exponent of the position-limiter de-acceleration, allowing to control how close

to the angular limit of the joint the output is allowed to get before being saturated. As β increases, the saturation

becomes more similar to a hard clamping function. The use of a soft limiter allows the output filter to avoid

overshooting any joint beyond its physical limits, given that in most cases, overshooting at the software’s output

level would result in a hard break at the hardware level. The default value for β is 1.

The {σ, ρ} parameters both represent smoothness and responsiveness respectively, and allow to tweak the filter,

changing how quickly it responds and how much it is allowed to oscillate. We call these the character parameters,

as different configurations for them will shape the motion differently. As such we argue that they can be used to

model different character traits, even when the same physical limits are enforced. The smoothness parameter σ will

ease out the oscillations. However, depending on other filter parameters such as the physical limits, fully easing out

might become too slow and make the motion seem too muddy and flat. That is where the responsiveness parameter

ρ comes in, which allows to precipitate the easing out, so that it may still be smooth, but faster, and thus, more

responsive.

Please refer to Section 6.2 for more details and examples on the Nutty Motion Filter and the use of its parameters.
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χ(x, ti) = x(ti−1) + λ(ψ(x, ti), velocity_limit)

ψ(x, ti) = ẋ(ti−1) + λ(
ξ(x, ti)− ẋ(ti−1)

∆t
, acceleration_limit)

ξ(x, ti) = ẍ(ti−1) + λ(
v·H(v)−ẋ(ti−1)

∆t − ẍ(ti−1)

∆t
, jerk_limit)

v = Ω(ẋ(ti), x(ti−1), Pmax, Pmin, β)

ẋ(tk) =


s−x(tk−1)

∆t , if k = i

x(tk)−x(tk−1)
∆t otherwise

H(v) =
v

2
·

(
tanh

(( |v|
1− ρ

)1−σ
− π

)
+ 1

)
, 0 ≤ σ ≤ 1, 0 ≤ ρ < 1

λ(x, k) =
k

2
· tanh(x/

k

2
)

Ω(ẋ, x, Pmax, Pmin, β) =


ẋ ·

(
1−

(
x−Pmin−α

α

)2β
)
, if (x > α & ẋ > 0) | (x < α & ẋ < 0)

ẋ, otherwise

α =
Pmax − Pmin

2

(6.16)

6.3.8 The Superpoint

In order for some of the calculations to work on the end-point link, we created the concept of the Superpoint. This

is a fake, 0-DoF joint, used within Postures, that extends the end-point’s segment. It allows the End-point to be

treated as if it had a child link with 0-DoF. Whenever the Posture’s data for the End-point is changed, the data for

the Superpoint is also updated, using the rules in Equation 6.17. Also note, by the definitions in Table 6.2 that the

Superpoint may be referred to either as ΨEEChild or ΛSkN+1
.

ΨEEChildθ
= 0 Let Ψ be the posture and EE the Endpoint

ΨEEChildQ
= ΨEEΩ

ΨEEChildρ
= ΨEEρ +Rotate(EEσ,ΨEEΩ

)

(6.17)

6.3.9 ERIK Extensions

Not all embodiments and application pose the same requirements. As such, ERIK was designed with the idea of

extensions (Ξ) in mind. Think of extensions as options that you may want to have activated or not, which may

change the way the algorithm runs, and thus can result on better outcomes for a given situation (while possibly

providing worse outcomes, for a different situation, with different criteria). In that sense, Extensions fall in the

category of Hyperparameters, and are therefore contained within those. The extensions we have designed and

included in the algorithm on this paper were all found to yield better results given the purpose we define (i.e.,

entertainment). If your purpose or criteria is different, there is an option to disable such extensions, to modify them,
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or even to create new ones. The currently included extensions are:

ΞSymmetricEndpoint Allows the algorithm to flip the end-point upside down. This is useful if the end-point is

symmetric, and can be used both ways. By using such a design, and activating this extensions, the possible

solution space doubles, and therefore allows the algorithm to properly solve in many more cases.

ΞAvoidEdges Instructs the algorithm to avoid positioning joints exactly on its angular limits. In cases where some

minor deviation from the goals is accepted, this extensions helps to avoid dead-lock situation when the joint

limits are equivalent to singularity-prone angles (such as ±π2 ).

ΞNonConvOffsetTrick Allows ERIK to attempt the Non-converging Offset Trick when a non-converging execution is

detected. This trick applies a small, random orientational offset to the target orientation in cases where the

execution has become non-converging. It results in an increase on the amount of cases where the algorithm is

able to converge, as long as a minor deviation from the goals is accepted. The deviation applied is defined by

hyperparameter ΛDisturbanceθ.

ΞNonConvCCDTrick Allows ERIK to run the CCD algorithm on a non-converging solution, after the Non-converging

Offset Trick failed to bring the execution into a converging state. It typically results in achieving the orientation

goal esier, while allowing the posture goal to become more disrupted (as expected through the direct use of

CCD).

6.3.10 Evaluation

Before claiming on the quality and success of ERIK, we are required to run extensive evaluation procedures. Given

that the algorithm aims at being used with any embodiment and expressive pose created by animators, we did

not want to access if the resulting solutions were able to solve particular use cases, as those should be tailored

creatively by such animators in the future. Instead, we realized that we wanted to assure that the algorithm would be

able to fulfill an animator’s intentions while authoring expressive postures for use with ERIK. Therefore, given an

expressive posture, we wanted to test how well the algorithm was able to hold its shape, while orienting its endpoint

towards various different target orientations. At the same time, we were concerned with how well the resulting

solution effectively aimed at the given target orientation, regardless of the resulting expression. This is because, for

interactive, real-work situations, we consider it particularly important to get the aiming right, so that the character is

believable, and is able to provide an immersive experience for the user. The expressivity of any particular posture is

not, in fact, evaluated. Instead, the evaluation focused on what can be regarded as a meta-expressivity, i.e., given

any posture, which an animator would have thought to be appropriately expressive for some purpose, we measure

how well the algorithm is able to reach a shape that is similar to the one given by that posture, and that capability is

what is evaluated as the expressive goal.

With the purpose of evaluating how well ERIK solves both the orientational goals and the expressive goals, we

performed what can be dubbed as a brute-force evaluation procedure. This procedure consisted of generating many

different expressive postures, and testing how well ERIK is able to solve them for a large set of different orientation

targets. All this was done for several different embodiments. It is impossible to cover every possible case through

such approach. However we consider that the tested cases are a sufficient reflection of how the algorithm performs
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in general, and are representative of both 1) the space of different expressive postures that any animator would

possibly produce; and 2) the space of different orientations to which the character might possibly have to face.

Additionally we compared ERIK against an existing technique. In this case we followed the description by

Baerlocher on how to solved an IK problem for multiple tasks [73] based on the DLS method. Taking the example

of a two-priority problem, the first task, with higher priority, would be the orientation constraint, while the secondary

task, of lower priority, would be the postural constraint. The technique was evaluated in the same way we tested

ERIK with multiple embodiments, and the results were further included in the same analysis.

Error Measures

Through preliminary experimentations, we decided to established a weight of 1.0 for εOrientation and 0.2 for εPosture,

along with an error threshold ΛThresholdε of 0.04. The use of these weights states that it is more important to get

the orientation goal solved than the expressive posture one. This is because we prefer that the resulting solution is

properly aiming at the target orientation, and, because we are aiming at expressive applications, we tolerate that the

posture may fall slightly out of shape, as long as it is still within an acceptable amount of disfigurement.

As to the error threshold, while it should be adapted to each embodiment, we found 0.04 to be a decent tolerance

to demonstrate and compare the results among different embodiments. In a real-world application, we would have

tweaked a different error tolerance for each of the different skeletons.

Evaluation Embodiments

In order to see how the algorithm performed for embodiments with various amounts of DoFs, we established 7

different test skeletons, which are presented in Table 6.5.

It is important to note that we have included skeletons with a low number of DoFs in order to validate that

the algorithm behaves as expected, even in such highly constrained situations. Our hypothesis here is that these

low-DoF skeletons will yield very poor results, and that by adding more DoFs, or configuring them in different ways

and with different angular limits, we can augment the expressive capabilities of the expressive character, which

should be proven by yielding better results in the same type of evaluation.
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Table 6.5: Definition of test-skeletons used in the evaluation procedure. In the figures, green nodes represent a
~Y -oriented rotation axis, while a red one is oriented with ~X , and blue with ~Z.

Skeleton
# DoFs and
rotation axis

sequence
(root to endpoint)

Angular Range Illustration

A 3 links
Y-X-Y

[−π2 ,
π
2 ]

(all links)

B 4 links
Y-X-Z-Y

[−π, π]
(all links)

C 5 links
Y-X-X-Z-Y

[−π2 ,
π
2 ]

(all links)

D 5 links
Y-X-Z-X-Y

[−π, π]
(all links)

E 5 links
Y-X-Z-X-Y

[−π2 ,
π
2 ]

(all links)

F 6 links
Y-X-X-Z-X-Y

[−π2 ,
π
2 ]

(all links)

G 8 links
Y-X-Z-X-Y-X-Z-Y

[−π2 ,
π
2 ]

(all links)

Procedure

Each skeleton was used to test ERIK in various different target postures and target orientations. The target postures

were generated by sweeping the angular range of each joint as long as it is not a root twist-joint, or an endpoint

twist-joint, with a given resolution, from its minθ to its maxθ, and combining them to create a large set of postures.

Based on our convention, the twist-joints are the ones whose rotation axis is aligned with ~Y . In fact, the full set of

skeletons has twist-joints both as root and as endpoints, which means that for each skeleton, all joints except these

two were swept to generate the target postures. The reason why we exclude these two are that they do not change

the actual shape of the posture, and including them would dramatically increase the simulation space.
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Figure 6.25: Five example test postures for skeleton C, representing the type of generated postures tested.

Figure 6.26: The postural simulation space for skeleton C, illustrating 3789 target postures in three different views.

In Figure 6.25 we can see examples of different target postures generated for Skeleton C, with 5 links. The

whole postural simulation space for the same skeleton is illustrated in Figure 6.26, where we see each of the 3789

generated postures overlapped. Note that the simulation space contains no rotation on the root joint, as it would

merely revolve the posture around the vertical ~Y axis, and thus would not change the posture’s actual shape.

Similarly, for the target orientations, we wanted to test the most various orientations in all different directions

around the character. For that we swept a horizontal angle αh, a vertical angle αv, and a twist angle αt, all in

the range {−π, π}. The sets of three angles were then used to generate a large number of target orientations (as

quaternions) through the Yaw-Pitch-Roll composition method. It may seem that for αv, sweeping in the range

{−π2 ,
π
2 } would have been enough; however extending the range to {−π, π} introduces additional target orientations

in which the target orientation is defined upside-down. We wanted to include such cases in the evaluation, to ensure

that the algorithm was also numerically capable of dealing with them. As a result, for each of the generated postures

of each skeleton, we took a point-cloud centered on the robot, each point representing a target orientation (including

the roll component). This method allowed us to run the algorithm on a large amount of different parameters, while

also taking extra care to ensure that potential failure points, such as angles set to ±π, and orientations aligned with

any of the coordinate axes, were guaranteed to be included.
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Figure 6.27 shows the orientational simulation space as a point-cloud with 7609 points, which was used to run

simulations for each posture or each skeleton. Each point illustrates a polar and azimuthal orientation angle, along

with a twist that is given by the radial distance from the center. Therefore variously twisted orientation quaternions

are tested in the same direction. Both positive and negative twist angles are tested - in this representation, the

zero-twist orientations are represented by the points that lie at the center of the point-cloud radius, while positive

ones increase towards the exterior, and negative ones towards the interior.

Figure 6.27: Illustration of a point cloud corresponding to 7609 test samples, each representing a different quaternion
to be used as the target orientation. Each point represents a polar and azimuthal orientation angle, along with a twist
that is given by its radial distance. The colors of the points are modulated from the twist angle (red are negative,
blue is zero, green are positive). Please note that the apparent existence of blue or even green dots at the center is an
illusion - they are in fact part of target directions that are roughly aligned with the viewing direction.

Comparison with the two-priority DLS

In order to compare ERIK against another existing technique, we chose to use the two-task-priority DLS as described

by Baerlocher [73], using Maciejewski’s damping factor [77] and the SVD method. These techniques have already

been reviewed in Section 3.2.1, and are reiterated in Equation 6.18.

This technique posed as the most appropriate to provide a comparison to ERIK, as it allows us to define two

tasks: the orientation task characterized by J1∆θ = ~e1, with a high priority, and the postural task J2∆θ = ~e2 with

a lower priority. Both J1 and ~e1 are calculated as they would usually be for an orientation-constraint task. The

secondary task is meant to keep the joint angles as close as possible to a given target posture Ψ. Therefore we

calculate ~e2, = Ψ− (~s+ ∆x), having ∆x = J†
λ1

1 ~e1, i.e., the current solution to the primary task. We recall also

that ~s is the initial joint configuration. Therefore the error vector for the secondary task represents the error between

the target posture and the posture that results from solving the primary task. As the secondary task aims at solving

towards a given posture, its Jacobian matrix J2 should correspond to the Identity matrix In, where n is the number

of joints. We add just one correction to it, by setting the value for the 1st and nth joint to zero in case that joint is a

twist joint, given that as in ERIK, those do not change the resulting posture’s overall shape.
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Link θ α a d
(Joint Angle) (Twist Angle) (Link Length) (Joint Offset)

1 0 π
2 0 10

2 π
2 0 30 0

3 0 π
2 30 0

4 π
2

π
2 0 0

5 π
2 0 0 40

Table 6.6: Denavit-Hartenberg parameters (classic) used to run the simulations of DLS on Skeleton C.
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1 ~e1 + (J2PN(J1))
†λ2

(~e2 − J2J
†λ1
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λ

= (
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σ

)viuTi //SVD
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d
2 if σmin ≤ d

2√
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d =
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(6.18)

The simulations using DLS were ran using Skeleton C, for which each joint can rotate only 90° to each side,

therefore making it much more difficult to face orientations that are behind the robot. Using ERIK, that was not a

problem given that we have the extension ΞSymmetricEndpoint, which allows the end-effector to be used upside-down.

While this feature is still used within DLS at the error function level, it is not properly considered by the actual

algorithm. We therefore also apply a correction to the orientation target in order to keep its up-side oriented in a way

that it is reachable by the test skeleton given its joint limits. This correction was the only one that we ever added

to enhance the results for a particular skeleton or technique, and in fact, is used only to enhance the results of the

technique to which we are comparing ERIK, for more realistic results. Initially we considered the results of DLS

too bad, and therefore the comparison (while optimistic for ERIK) was considered inappropriate.

The correction is made by flipping the target orientation’s quaternion upside-down (i.e., performing a rotation

of π about the unit ~Z vector) in specific regions of the target space, so that we guarantee that the target’s up-side

is always directed to facilitate the result of DLS using Skeleton C, i.e., when the target is facing forward then its

Y-axis will always be facing down; when the target is facing backward, then its Y-axis will always be facing up.

Therefore the target is never an orientation that is mechanically unachievable a priori.

The classic Denavit-Hartenberg parameters used to model Skeleton C are presented in Table 6.6.

Finally, because the DLS technique outcome is very dependent on the maximum number of iterations execution, we

also ran several trials with the technique using 100, 200, 400 maximum iterations. Each will be referred to as e.g.

DLS100 or DLS400. Whenever we refer solely to DLS, we will be referring to the best version of it (DLS400).

We started by running a set of simulations using DLS100_nopost, which is DLS100 without the homogeneous

solution, i.e., without the second part of the equation which attempts to solve for the target posture using the primary
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Jacobian’s null space. The goal with these simulations was to assess how well the DLS implementation was able to

solve solely for orientation targets using Skeleton C, which is highly prone to singularities. Although the technique

we follow is stated to be free of algorithmic singularities, the parametrization of the skeleton may also introduce

kinematic singularities (e.g. gimbal lock). In fact, upon running the simulation using DLS100_nopost, we found

that there were many target orientations for which the algorithm became stuck yielding a very high orientation error,

which we attribute to such type of singularities. In order not to impair the results of the DLS simulations when

compared to ERIK (which does not suffer from such singularities), we further used this simulation to filter the DLS

results in order to remove all the samples for which the DLS100_nopost version yielded an orientation error above

3x the specified threshold, thus excluding from the comparison exceptionally bad results that were not due to the

posture constraint, but to inappropriate handling of kinematic singularities. As such, in the comparison of ERIK and

the DLS variants (Section 6.3.10) the results from the DLS simulations presented are the results of applying such

filter.

Figure 6.28 compares the resulting orientation error histograms and normal distribution plots for ERIK and the

filtered DLS100_nopost on Skeleton C. Note that the data from ERIK actually resulted of the full simulation of

ERIK with both orientation and posture targets. Therefore we see that ERIK has performed better in solving the

orientation constraint even through it also had the posture goal. The DLS performed slightly below expectations, but

we must consider that the simulation attempted to orient the end-effector to a very large big range of orientations in

full 3D, i.e., pan, pitch and roll of the end-effector, towards the full vertical and horizontal 360°range. The DLS

results here have been corrected to match the number of samples of the ERIK one (which was also solved for each

posture), therefore presenting a comparable scale; otherwise considering only the range of orientation targets, the

DLS result would present far less samples and thus make these difficult to compare.

Results

Using ERIK, a total of 239 245 243 samples were simulated from 39 739 postures across all 7 skeletons. The DLS

was simulated for a total of 86 491 503 samples from 3789 postures using Skeleton C, in this case using three

different maximum iteration counts. However as explained in the previous section, the DLS results were further

filtered resulting in a total of 61 684 497 selected samples.

The simulations were ran on a high-performance computer cluster (HPCC) containing a mix of nodes with

AMD Opteron 6180 SE and 6344, and AMD EPYC 7401 CPUs, organized into nodes of either 48 or 96 CPUs. In

order to normalize and interpret the performance results from these simulations in comparison with a typical laptop

CPU, we have searched for single-core benchmarks of these CPUs on community-sourced benchmark websites. We

took as an example the Intel i7-7700HQ, which is a popular CPU, featured in many mid and high-end personal

laptops, and that is also at least 2 years old (launched Q1’2017) to represent an average laptop CPU. Despite the

multiprocessing capabilities of any of them, we were interested in the single-core performance, as each simulated

sample ran as a single-core process, and are also expected to run as such in a real-world application (even if it is

used within a multi-threaded/multi-core application, the IK engine per se should run sequentially in a single thread).

Table 6.7 shows the highest benchmark of each of these CPUs, using a Linux 64-bit system, as found on the

community-sourced Geekbench website19. We consider these values to stand as an acceptable comparison of how

19https://browser.geekbench.com/ (accessed January 12, 2019)
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(a) Orientation error histogram for skeleton C running ERIK compared to DLS100_nopost.

(b) Normal distribution plots of the orientation error of ERIK compared to DLS100_nopost.

Figure 6.28: Comparison of orientation errors of ERIK on Skeleton C compared to DLS100_nopost after filtering
out samples with excessive orientation error in the latter.

the performance statistics collected through the HPCC compare to those of an average computer. By considering this

score instead of theoretical values such as MIPS or GFLOPS, we are also considering more of a general performance

capability without considering particular architecture-wise optimizations. For ERIK, all the simulations except the

largest one were arbitrarily assigned to an Opteron node, which leads us to consider an average of both those CPUs

for those simulations (these CPUs were distributed 50/50 among the total). The largest simulation, for Skeleton G,

was specifically assigned to an EPYC 7401 node. For DLS, the simulations were arbitrarily assigned to any of the

available nodes, being mostly attributed to an Opteron one. However in various cases the simulations were ran on

an EPYC node. As such, for the DLS simulations we consider the weighted average benchmark score for all nodes,

given that from a total of 672 CPUs, there were 192 EPYCs, and 240 of each of the Opteron types.

Table 6.7: A comparison of the single-core performance of the CPUs used in the HPCC for the simulations, and
how they related with the performance of a typical laptop CPU (ratio).

CPU Max Benchmark Score Ratio

Intel i7-7700HQ 5341 1.0000
AMD Opteron 6180 SE 1615 0.3024
AMD Opteron 6344 2233 0.4181
AMD EPYC 7401 3853 0.7214
AMD 6180 SE & 6344 average 1924 0.3602
ALL AMD - weighted average (4:5:5) 2475 0.4634

The statistics regarding the whole procedure are summarized in Table 6.8. This table contains the number of

postures and total samples ran for each skeleton (recall that each posture was simulated on 7609 target orientations).
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It additionally contains various run-time statistics regarding the execution time to process a single sample (posture-

orientation pair), and on the number of iterations that were ran. The execution time presented was corrected based on

the ratios from Table 6.7 and therefore represent measured time · ratio in order to present all the statistics corrected

as if they had all been ran on an average computer (taking an Intel i7-7700HQ as example).

Table 6.8: Statistics regarding the evaluation experiments with a total of ∼ 239M samples. Note that for the DLS
cases, we present the total number of postures simulated, but the number of samples corresponds to the result of
applying the filter explained in the previous section.

Skeleton Number of Iteration Count Time per Sample (ms)
DoFs Postures Samples Min Max Mean S.D. Min Max Mean S.D.

A 3 33 251 097 1 7 4.14 2.17 6 126 45 28
B 4 377 2 868 593 1 10 3.42 2.19 8 189 45 30
C 5 3 789 28 830 501 1 12 2.31 2.08 6 1165 37 36

C-DLS100 5 3 789 20 561 499 1 100 63 43.6 1.60 2112 167 121
C-DLS200 5 3 789 20 561 499 1 200 120 92.8 1.57 3822 298 240
C-DLS400 5 3 789 20 561 499 1 400 234 191.6 1.55 7520 678 570

D 5 3 789 28 830 501 1 13 2.02 1.67 10 458 36 30
E 5 3 789 28 830 501 1 12 1.93 1.78 6 225 28 27
F 6 8 305 63 192 745 1 13 1.61 1.46 13 368 35 35
G 8 19 657 149 570 113 1 11 1.35 1.02 22 759 74 63

Analysis of Results: ERIK

After running the simulations on the different skeletons, we collected all the data and plotted the histogram for

the error function and measures, as presented in Figure 6.30. Each line of the histogram figure represents an

embodiment, from skeleton A to G, as indicated in the titles of the individual graphs. The first column of graphs

contains the results for the value of the (combined) error function Λφ for each final solution. The second and third

columns of graphs contain the final error for the individual measures εOrientation and εPosture. At the top of the figures

matrix we have placed the Legend, which applies to all the graphs.

Each graph shows the distribution of the error for all the solutions. The vertical axis represents the total count

(frequency) of solutions that yielded a final error, given by the horizontal axis. Note also the dashed vertical

lines, which represent the intended maximum error (ΛThresholdε), and also the solid vertical line, which aids in the

visualization of the data, by representing the maximum error produced within the graph’s samples. Note also that

the range of the horizontal axis (error range) is the same in all rows except for the shaded ones in the first row, and

that in the 5-link skeleton rows, each column presents the same Y value across all the three rows in order to help

comparing between these cases.

Plotting the normal distribution of the error function results for each skeleton, provides further support on the

interpretation of the results beyond the individual histograms, as illustrated in Figure 6.29. This figure shows the

normal distribution for the combined error and for each of the error measures, for each of the skeletons except for A,

which, due to its large error, disrupts the presentation of the others (and does not provide a significant interpretational

value). The general interpretation taken from the normal plots is that all skeletons performed well regarding the

Orientation Measure, and that the performance on the Posture Measure increased with the number of DoFs in the

skeleton. Detailed interpretations will follow below.
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Figure 6.29: Normal distribution plots of the final combined error and error-measures for each skeleton except
skeleton A.

Results for Skeleton A

These show that the target orientation goal failed immensely. This was highly expected given that the mechanical

limitations of its joints, with only one pitch joint, limited to [−π2 ,
π
2 ], would not allow it to aim at any orientations

below the horizon. We also see that the posture errors do not seem so bad - that is because being a single-segment

embodiment, the single and only posture it can perform is a straight line. Given that the whole corpus of experiment

data would also generate only straight postures to be tested, it ended up not performing so bad there. Despite that,

this case was meant to test if the algorithm reflected the expected results on such a constrained embodiment, with

nearly no possibility of performing expressive postures while aiming at a given direction. The results confirm our

hypothesis.

Results for Skeleton B

These show a substantial decrease in error compared to Skeleton A. By adding one more DoF, and allowing each

DoF to have a higher range of motion, the skeleton was able to aim even at orientations below the horizon, as can be

seen in its Orientation Error histogram, which always produced an error below the threshold. However, in order to

achieve all the target orientations, the posture goal was largely missed, as seen in its Posture Error histogram. The

normal plot shows that the error for Skeleton B (in red) was largely distributed beyond the specified threshold on the

Posture Measure, and consequently on the Combined Error. However the graph for the Orientation Measure shows

a good performance (its curve overlaps with the one of Skeleton C, in yellow). Still this skeleton does not represent

a useful use-case for ERIK - instead it provides further support over the validity of the algorithm and its evaluation,

as its bad results go in line with our expectation.

Results for Skeletons C, D, E

By adding another DoF, these results show lower error values compared to those of Skeleton B. We can note that

in particular, the maximum Posture Error has decreased, meaning that the extra DoF provided the character with

the ability to perform more expressive postures towards any direction. In C and E, some Orientation Error outliers

have however produced an error above the intended threshold. However, it seems that there were very few of these

situations, which makes them nearly imperceptible in the graph, if it wasn’t for the Highest Error line.

These skeletons start to yield results as we expect: to successfully orient to any given direction, while holding an

arbitrary expressive posture that is allowed to slightly distort in order to ensure the prioritized orientation constraint.

We take these conclusions from the Orientation Error histogram, which contains only some outliers beyond our
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(a) Results for skeletons A and B, the 3- and 4-link skeletons, which perform below expectations, but contribute to verify that the
algorithm results the expected results for those cases.

(b) Results for skeletons C, D and E, the three different 5-link skeletons, which start to yield satisfactory results.

(c) Results for skeletons F and G, the 6- and 8-link skeletons, which return the most satisfactory results.

Figure 6.30: Results of ERIK’s evaluation process. Each line corresponds to one of the seven skeletons used. The
columns correspond to each one’s Error Function result, Orientation Error and Posture Error. Please note that the
legend above the graphs applies to all of them.
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given error threshold, and by the fact that the majority of the Posture Error is within the threshold, and that the ones

that were distorted beyond it are contained within at most 3x that threshold, with frequency decreasing as the error

increases.

Is is however interesting to perform a comparison between these three 5-link skeletons. Although they all have

the same number of DoFs, they are configured in different ways. As seen in Table 6.5, skeleton C has an YXXZY

configuration, while skeletons D and E use an YXZXY configuration. Furthermore, the angular limits of skeleton D

are [−π, π] while skeletons C and E have limits [−π2 ,
π
2 ]. The normal plots make this comparison more explicit.

It becomes clear that from these three (C in yellow, D in green, E in cyan), all performed approximately well in

the Orientation Measure, with Skeleton D performing best in the Posture Measure and the Combined Error, where

Skeleton C performed worst. This draws the conclusion and illustrates that 1) a different joint configuration such as

between C and E affects the performance, with, in this case, the layout of E providing better expressive capabilities

than the one of C, while also showing, as expected, that by providing a wider range of motion, as in D versus E, that

D, the one with the wider motion, can also perform better.

Results for Skeleton F

By introducing just one additional DoF as compared to C, D and E, the algorithm increases its performance. It

is interesting here to compare in particular skeleton F to skeleton D, being that F has a lower angular range than

D, but an additional DoF. While it may seem unclear from the histograms which of the two performed best, the

normal plots does elucidate that Skeleton F performs better as seen in the normal distribution of the Combined Error,

and of the Posture Measure. Interestingly skeleton D performed better in the Orientation Measure, however both

performed within the threshold.

Results for Skeleton G

Finally, Skeleton G, with 8 links shows the best results as can be clearly seen in both the histograms and the normal

plots. Again, through the normal plots it is seen to be not the best performer on the Orientation Measure, however,

its ability to perform well on that measure, and perform exceptionally on the Posture Measure make it the best from

this case set.

Results Comparison

The results presented here confirm our initial hypothesis that, as long as an embodiment has enough DoFs, it is

able to use ERIK orient its endpoint towards any given target orientation, while successfully portraying a given

expressive posture with minimal disruption. We group the results in three groups. Skeletons A and B can be seen

as proofs of concepts, that serve to show that the algorithm fails when and how we expect it to fail (in highly

constrained skeletons, with very few DoFs). Skeletons C, D, E and F are representative of cases where the algorithm

starts to show positive results - with 5 or 6 DoFs it is mostly able to comply with all the constraints we have imposed,

such as the joint limits and the error threshold, when solving for an integrated posture-orientation goal. Finally,

skeleton F, with 8 DoFs already represents a case where the problem is solved in the most acceptable way, with both

error measures performing below the threshold for nearly all the tested samples.
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Analysis of Results: ERIK vs DLS

The same procedure was followed for analysing the results of the DLS technique. Figure 6.31 shows the normal

distribution plots of the errors compared to the ones of ERIK with the same skeleton. Here we find that despite the

improvements, there was nearly no difference in the general distribution of the errors across the different variations

of DLS. In fact the three curves nearly overlap and become indistinguishable. We additionally detail the mean value

and standard deviation for each of the cases in Table 6.9, which shows that there was a very slight improvement in

the errors as the maximum number of iterations was increased.

In particular, and as we had already foreseen, ERIK performed better in achieving the correct target orientation.

What we were most interested in finding out was how the posture error of the DLS would perform. Here we find

similarly shaped curves for both ERIK and DLS, although ERIK’s curve is centred around a lower mean error, thus

revealing that it did in fact also perform better than DLS on solving the the posture target.

Figure 6.31: Comparison of the normal distribution plots of the errors for each DLS version and for ERIK
Skeleton-C.

Combined Error Orientation Error Posture Error
Mean S.D. Mean S.D. Mean S.D.

ERIK 0.026614 0.021258 0.005819 0.009977 0.020795 0.021520
DLS100 0.087067 0.086930 0.052744 0.085997 0.034323 0.020593
DLS200 0.086973 0.086897 0.052652 0.085980 0.034321 0.020591
DLS400 0.086831 0.086581 0.052523 0.085669 0.034308 0.020579

Table 6.9: Mean value and Standard Deviation for the ERIK and DLS variants comparison.

6.3.11 Discussion

The ERIK technique is a promising new step in the field of character animation, especially for robots and other

interactive and immersive characters that are driven by AI. When driven by such AIs, and/or subject to stimuli such

as user perception, it is important that the character animation engines for real-time, interactive characters, are able

to process the flow of information that arrives through its sensors, and use it to influence and drive the character’s

behavior and animation. Our work takes an important step in that direction as the results support our initial claim

that ERIK is able to provide expressive inverse kinematics solutions in real-time which simultaneously solve for an

expressive posture goal, and for a target orientational goal.

Aiming at characters that are driven in real-time, and need to be expressive while also using their body to

interact, such as gaze-tracking a person or object, ERIK succeeds in tackling both goals simultaneously for the

majority of the situations. It was expected that by having more DoFs in the embodiment, both goals could be solved

with lower error measures. In average, for a 5-link skeleton, the algorithm took 34ms to calculate a solution, and
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74ms for a more complex 8-link skeleton, yielding a solution rate of 30 and 14 Hz respectively. While it would

be desirable to have higher performance rates, our own implementation has show it to be adequate for real-time

applications, as long as the IK solver is not synchronously running with the output module. By using the Nutty

Motion Filter on the output module to smoothly interpolate the IK solutions in real-time, we are able to achieve

smooth, sustained motion that can be used in such applications.

We have tested various skeleton configurations and ran extensive simulations in order to validate our claims. It

is arguable how such an evaluation should be performed, however, in order to provide a general view, we opted out

of evaluating the use of a robot using ERIK in a particular application with a smaller set of expressive postures, as

that would also confine the validity of any conclusions to that single embodiment and set of postures. We therefore

outlined the requirements that should be met by the algorithm to allow it to be used in any application, with any

posture and with an arbitrary skeleton layout. Instead of using a small set of animator-designed postures, we took a

sample of all the possible postures that each skeleton would allow to design. Instead of measuring how well a result

met an animator’s expectations (which is a subjective evaluation), we measured how close the resulting postures

were to the original posture in terms of shape, using a heuristic method (the Posture Measure). By ensuring that the

resulting posture is similar to the original, which in a real-world application, would be given by an animator, we

expect and claim that the animator would also find the resulting posture satisfactory.

We additionally compared the results of the ERIK simulations to the same simulations using the DLS technique

with postural control as the secondary task. Results showed that ERIK performed better in both the individual

orientation task and the posture task. We argue that the DLS simulations using the tested Skeleton C are prone to

kinematic singularities, which may have not been properly addressed. Therefore the result comparison was made

with a filtered version of the DLS results, in order to excluded samples that seemed excessively bad due to that

issue. The filtered results still show a worse performance compared to ERIK. Furthermore, even if all the kinematic

singularities were properly dealt with in every case, the DLS simulations performed significantly slower than ERIK.

Therefore, for the problem that we specify, ERIK represents a substantial improvement against using the DLS

technique with the secondary task for posture-control, given that:

• Using ERIK one can use any embodiment even if highly redundant, which would be prone to kinematic

singularities using Jacobian methods;

• ERIK performs on average about 4.5x faster than DLS on a similar task.
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Chapter 7

Case Studies

7.1 Architectural Studies

The theories, practices and technologies for robot animation presented in the previous chapter have been used

through the years in various different HRI scenarios, using different robots. This chapter presents some of the most

relevant applications that were developed based on the contributions of this thesis.

7.1.1 EMOTE

The EU FP7 EMOTE project1 developed an autonomous empathic robotic tutor to teach topics about sustainable

development to children in schools. This represents the first use of the SERA ecosystem, along with the first mature

version of the Thalamus framework (which was initially created prior to EMOTE and SERA). A NAO torso robot 2

plays an educational video game called Enercities3 on a large touch-table along with one or two children (Figure

7.1).

Figure 7.2 illustrates the components used in the EMOTE scenario. All components were developed as Thalamus

modules, with Skene acting as the main central point of the system. As the earliest scenario using the SERA

ecosystem, it still didn’t use Nutty Tracks as the animation system. Instead, a specific NAO Robot module was

written to connect Thalamus with the NAO’s api (NAOqi framework4). However, this scenario was developed

during the whole course of the EMOTE project, and as such, it was also a sandbox for experimentation on, for

example, the role of Skene, and what kind of perception information could be generalized in such a system. Skene

was used to manage all the gazing, both between the robot and the children, and also towards specific on-screen

targets. Because it includes a model of the environment, it is able to translate screen coordinates provided by the

Enercities Game (in X,Y pixel coordinates) to angles that are then used to generate gazing or pointing commands.

Because NAO includes its own TTS, there was no need to include it as a separate component.

Two lavalier microphones were used for more accurate perception of when and which student was speaking, so

that the robot could properly gaze towards that student, or wait for silence before starting any speech behavior. The

1EMOTE project: http://www.emote-project.eu (accessed January 12, 2019)
2NAO Torso Robot: http://doc.aldebaran.com/2-1/family/nao_t14/index_t14.html (accessed January 12, 2019)
3EnerCities: http://www.enercities.eu/ (accessed January 12, 2019)
4NAOqi: http://doc.aldebaran.com/1-14/dev/naoqi/index.html (accessed January 12, 2019)
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Figure 7.1: The physical setting of the EMOTE Enercities scenario.

specification of perception messages however, are abstracted in such a way that, in the absence of the microphones,

such role can be performed by the Kinect, even if with less accuracy.

Figure 7.2: System used in the EMOTE scenario. Coloring of the Thalamus components are meant to match the
ones of the SAIBA and SERA models (Figures 3.1 and 5.3)

.

7.1.2 E-Fit Keepon

E-Fit is an adaptive HRI application that keeps early adolescents engaged in physical activity over long periods

of time [116] (Figure 7.3). The Keepon robot [175] interacts with participants once a day for approximately 5-10

minutes. Each day, the robot asks a series of questions and collects data from an off-the-shelf fitness sensor worn by

participants. The robot’s back-story unfolds over time. It is a robot-alien, named EfiT, that landed on Earth and

needs the adolescent’s help to return home. If the user accomplishes daily physical activity goals he will be helping
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Figure 7.3: The E-Fit scenario.

the robot get back to its home planet.

Figure 7.4: System used in the E-Fit scenario.

This project was a collaboration with Yale University’s Social Robotics Lab5. Figure 7.4 shows the structure of

the E-Fit scenario. Following the SERA model, it looks similar to the EMOTE project’s architecture in Figure 7.2.

The major difference is that the decision making is performed solely by a Dialogue Manager, while in EMOTE

there was a separate AI just for calculating game moves. An EfiT App also runs on a smart-phone, instead of a

touch-table and provides task-related interaction to the children. The Perception is simplified to using the Kinect

only for face-tracking, because contrary to EMOTE (where microphones are placed on the students), in this scenario

children interact freely with the system. Finally, the NAO robot is replaced with the Keepon robot, which was now

controlled using Nutty Tracks.

7.1.3 Sueca

In the Sueca scenario (Figure 7.5), the EMYS robot plays a traditional Portuguese card-game called Sueca6,7 [176].

This HRI scenario is aimed at the elder population, where the Sueca card game is very popular. As such, both the

game and behavior of the robot were designed following an initial user-center design study lead by psychologists,
5http://scazlab.yale.edu (accessed January 12, 2019)
6Sueca: https://en.wikipedia.org/wiki/Sueca_(card_game) (accessed January 12, 2019)
7Sueca-EMYS video: https://vimeo.com/153148841 (accessed January 12, 2019)
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Figure 7.5: The physical setting of the SUECA scenario.

involving members of the elderly population [177, 140]. Figure 7.6 shows the components of the scenario. Similarly

to the previous scenarios, the system relies on Thalamus, Skene and Nutty Tracks to integrate and manage the

behavior of the EMYS robot. As in the EMOTE scenario, the decision making was split between two components:

because Sueca is a game, there is a Sueca AI dedicated to calculating game moves. Along with that, the main

decision making is performed by FAtiMA [178], which includes social behaviour.

This scenario accommodates four simultaneous players (one of them is EMYS, the other three are humans),

each sitting at one side of a touch table with fiducial marker recognition capabilities. It is played using real card

games, using a custom deck in which each card contains a specific fiducial marker on each side. After a player deals

the cards to each player, each of EMYS’s cards is placed facing down on the table in order for the fiducial markers

to be recognized. That way the robot is informed of the hand that was dealt to it. Those physical cards are placed

aside, and throughout the game, EMYS plays with a virtual version of them. All the other players however, still

play with the real physical cards, which upon being cast on the table, are immediately recognized by the game and

inform EMYS on what has been played.

The Sueca game is played in teams, being that each opposing pair of players play together against the adjacent

ones. As such, an external Perception component to track all the human players has not been included yet, given the

wide angle it would have to track. EMYS therefore relies on contextual information to know who’s turn it is, and

uses that information to, for example, gaze or speak at the current player. It also uses all the information and events

provided through the Sueca Game application to know that the player has touched the screen (and generate gaze

commands), or performed a game move.

A further evolution of the Sueca scenario was later developed which features two EMYS robots playing in the

same game, along with two human players (Figure 7.7) [179]. One of the robots is still called Emys, while the other

is called Glin. The overall architecture of the system is pretty similar as can be seen in Figure 7.8, however it was

mostly duplicated so that each robot was independently controlled while still sharing the same activity (the Sueca
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Figure 7.6: System used in the Sueca scenario.

Figure 7.7: The physical setting of the Mixed Teams SUECA scenario.

game). For that, two independent Thalamus characters were launched, and the Sueca Game module connected to

both, thus acting as a bridge between them. This way for each robot was controlled by its own Decision Making/AI,

Skene and by its own Nutty Tracks, while also using their own TTS voice.

7.2 User Studies with ERIK and Adelino

Upon developing ERIK and evaluating it algorithmically, we realized that further evaluation with users should be

taken to assess how well a real system that uses ERIK would be able to stand up to our expectations. Because in

most cases there exists no solution that simultaneously satisfies the target posture and target endpoint orientation,

the computed solution will tend to satisfy the orientation constraint, while slightly allowing to alienate the intended

expressive posture.

In the next two section we present two user-studies that were developed to address particular questions regarding

the use of ERIK in real-world applications. In both scenarios we used the Adelino robot, which has a 5-dof

manipulator-like embodiment, and an abstract face. Its kinematic structure is the same as Skeleton C in the ERIK
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Figure 7.8: System used in the Mixed Teams Sueca scenario where two independent EMYS robots interact with two
human players through a same game application.

Evaluation (Section 6.3.10).

7.2.1 Adelino, The Craft Robot

The Adelino robot was designed and built in order to fully challenge and test the capabilities of ERIK, with several

goals in mind:

• Demonstrate ERIK in a custom built robot;

• Demonstrate ERIK with an autonomous craft robot;

• Promote the design and creation of craft robots for Do-It-Yourself (DIY) audiences;

• Provide animation software for Craft/DIY robots;

• As a learning and exploration exercise, to understand how to design and build robots that balance expressivity

and affordability, in order to promote them to animation artists in the future;

We started by designing the concept of the robot using 3d animation software, as was previously done by Hoffman

& Ju [96]. This can bee seen in Figure 7.9. The robot was designed as a line shape, as it is common for traditional

and 3D animators to start their learning process by animating lines of action. These lines of action are “the first line

indicated in a pose, that shows the basic overall posture, prior to adding the rest of the details” [154].

The lines are used to design the attitude poses of a character - ones “that convey what a character is feeling

while he’s moving”. We can think of the line of action of a humanoid character to be its spine, grounded by its

dominant leg. Based on this concept, we created a robotic line of action, with a minimum amount of degrees of

freedom (DoFs). We added however, a face-like tip on the line in order to allow it to express gazing behaviour.

After our design concept phase, during which we tested some 3D animations with the character, we settled

with five DoFs. In order to overcome typical low-end servos’ limitations of rotating only 90 degrees to each side,

the head was designed to be nearly symmetric along its vertical axis. Instead of having a fixed up or down side,

142



Figure 7.9: The concept design of the Adelino robot. It was initially modelled and animated using 3D animation
software, to explore the size and placement of each segment and articulation, in order to maximize its expressive
capabilities. Note that in this image, at some points, there are articulations that can rotate more than 90 degrees to
each side. This feature was not maintained in the actual robot due to typical servos’ limitation.

depending on the target posture and gaze direction, the robot could twist and turn upon itself, using the head "upside

down", while still having the same appearance.

The actual robot is pictured in Figure 7.10. Its structure was hand crafted using balsa and pine stripwood, screws,

washers, nails, some aluminium wire, one bearing, a hammer, a saw, and a drill/screwdriver. It is controlled using

five hobby-grade servos connected to an Arduino8, and an extra 5V, 2.0A power supply to feed the servos. The

servos were chosen in order to be the cheapest ones that could handle the expected load. The commonly available

and low-end motors are, however, restricted to 180 degrees of motion, thus allowing each joint to rotate only 90

degrees in each direction, given a rest pose that shapes the robot to the form of a vertical line. It also contains two

small LEDs on the tip, allowing it to act as a face, so that it can portray the impression of gazing towards a given

direction by pointing the tip towards that direction. In our vision, this organo-tech look, with exposed electronics

(servos and wires), actually adds a more life-endued feeling to the robot in addition to its organic feel, as it breaks

away from seeming a mere sculpture or piece of furniture, to become a creature that was gifted with some force and

vitality (anima), especially as the wires’ appearance resemble veins or a nervous system (which in fact, they are).

Our motivation on building such a robot was not to make it a prototype, nor solely to lower the cost of its

production. We wanted to build and show a robot that could appeal to non-technical audiences, such as animation

artists, and to follow a construction process that did not require complex machinery or 3D printing.

In the future, we want artists to be able to design and build their own robots following on Adelino, and to be

able to change the design and improvise at will, without having to go back and forth between CAD software and 3D

8https://www.arduino.cc (accessed January 12, 2019)
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Figure 7.10: The Adelino robot, in four different expressive postures. The top row shows front views of each posture.
Under each is the corresponding side view.

printers, nor any other technical machinery. Using craft materials, they can cut pieces with different lengths, shapes,

paint it, or glue anything to it, with more creative freedom.

At the same time, because our goal is to challenge and test our algorithm, we wanted the final evaluation to

heavily rely on our software, and not on the use of expensive motors or precision machinery. As such, one of the

major motivation for our craft approach was to demonstrate ERIK using the lowest-quality robot we could build.

That way, we argue that there is only space for improvement on the resulting animation quality, given that the motors,

structure, and build process can all be enhanced. Although the robot exhibits a somewhat unintentional shaky

behaviour, we considered that such shakiness could become part of its own unique character, and aesthetically, to

actually contribute to a sense of lifelikeness.

Given that the ERIK algorithm is proven to yield reliable results in terms of inverse kinematics, we decided

to proceed to use Adelino on user-studies given that despite its shakiness, it still seemed to manage to convey

the expressive postures as intended (which we further confirmed in the following two sections). Furthermore, we

designed animations and postures in a way to ensure that the intentional expressions of the robot were clear and

explicit, even slightly exaggerated, so that they were clearly distinguishable from any involuntary shaky motion.

Using Adelino to illustrate the capabilities of ERIK, and taking as example Figure 7.11, given an expressive

posture, the character is able to gaze towards different directions while attempting to maintain the given expressive

posture. This figure demonstrates it by showing the virtual view of the robot’s skeleton, holding an expressive

posture while shifting the orientation target, as if the robot was gaze-tracking the user with an expressive stance.

In another demonstration, Figures 7.12 and 7.13 show the robot holding an orientation while shifting between

postures, as if the robot was gazing towards a stationary user or location, and solely shifting its expressive stance.

Note that during an interaction, the transition between postures may even give an impression that it was pre-designed.

However, with pre-designed animations it would not be possible to maintain gaze-contact with the user.
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(a) A neutral stance from -180°to 180°in 60°steps.

(b) An unengaged stance from -180°to 180°in 60°steps.

(c) An engaged stance from -180°to 180°in 60°steps.

Figure 7.11: Demonstration of the ERIK algorithm on Adelino’s skeleton. Three different expressive postures
are presented. For each posture the ERIK orientational target was swept 360°. The images were captured directly
from ERIK’s visualizer in Nutty Tracks. The blue lines represent the target expressive posture which remains
fixed throughout each frame. The yellow arrows represent the target orientation. The circular sector at each joint
represents its rotational limits. Red means that the joint is at its rotational limit.

(a) A shift from an engaged posture to an unengaged posture in an easy angle, relatively towards the front of the character.

(b) A shift from an engaged posture to an unengaged posture in an extreme angle, upwards and towards the side of the character.

Figure 7.12: Demonstration of orientation hold during posture shifts. Two shifts of posture are shown, one for a
common easy orientation, and another for a more complicated, extreme orientation. The blue arrow represents the
character’s frontal direction. The remaining elements are described in the caption of Figure 7.11.
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(a) Stack of frames showing the shift
from engaged to unengaged at an easy
orientation.

(b) Stack of frames showing the shift
from engaged to unengaged at an ex-
treme orientation.

Figure 7.13: The accumulation of frames for each of the cases described in Figure 7.11. This onion-skin view helps
to illustrate the motion of shifting between both postures.

7.3 Ahoy - The Pantomimic Expressive Manipulator

Our first user-study of ERIK was created to address the following research question:

Can an expressive posture be encoded into a face-tracking manipulator-like robot, using ERIK, in order

to convey a purposeful intention to the user?

With this question in mind, we formulated the design of a scenario in which participants would benefit of interpreting

understanding the robot’s non-verbal queues in order to progress or succeed in a given task.

For that we developed the Ahoy scenario, in which a human plays a pantomime game with a robot. On each

round, the robot performs an animation that represents a word that must be guessed by the user within a time limit.

A Wizard (Controller) was given the role of selecting the expressive posture, which the IK algorithm tried to

maintain while tracking the user, during the guessing phases. The user-study was performed using two different

conditions:

C1 - Intention-expressive : During the guessing of the word by the user, the robot changes its posture depending

on a hot-cold measure, in order to provide hints to the player about their guess;

C2 - Non-intention-expressive : The robot maintains the same posture (’neutral’) throughout all the guesses.

No other verbal or nonverbal communication was used for the game.

Upon this, in order to address the research question, we have formulated the following hypotheses:

H1 The robot is perceived to play the game similarly well, in both conditions. Measure: Performance Mean (1.*)

H2 The robot’s animation conveys the illusion of life, in both conditions. Measure: Animation Mean (2.*)

H3 In the Intention-expressive condition (C1), players perceive the robot’s posture changes as its intention of

providing hints to the player. Measure: Intention Recognition (3.1.a).

H4 In the Intention-expressive condition (C1), players correlate the intended hint of the robot with their performance

in the game. Measure: Intention Legibility Mean (3.2.*)).
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7.3.1 Sample

For this study we had a total of 42 university students (22 males and 20 females) with ages ranging from 18 to 34

(M = 22.71; SD = 2.95). 31% of the participants had interacted with a robot before and 25% frequently played

the pantomime game. Half of the participants were randomly assigned C1, and the other half to C2. One participant

from each condition were later excluded due to not complying with the questionnaire instructions.

7.3.2 Procedure

Upon arrival to the experimental setting participants were given an explanation about the study and as they enter a

room where the robot was, the robot would see him/her and start interacting. A word category would be projected

on a wall, and the robot would pantomime it through an animation. As in a regular pantomime game, the participant

should verbally keep on guessing the correct word until either a correct answer was performed, or until time was

out (40 seconds per word). The robot would then let them know if they either got it right, or if they were unable to

answer within the time limit, and would then move on to the next word, until it finished. In total there were seven

rounds. They were told they would understand when the game was finished, and could then leave the room, as the

experimenter would be waiting right outside. Upon the interaction, the participant was led to a private room to

answer the questionnaires. At the end of the study, a lottery was ran to draw thank you gifts between the participants

(12 movie tickets were drawn within the 42 participants). In C1, upon each guess, the robot changes its posture

depending on a hot-cold measure, in order to hint the player about their guess; C2, in which the robot maintains the

same posture (’neutral’) throughout all the guesses.

In a physically separate room, two wizards (W1 and W2) teamed to replace an artificial intelligence capable of

quickly assessing the hot-cold quality of the participants’ guesses. This design was chosen due to the an open-ended

game vocabulary, and because participants were not equipped with a wearable microphone. W1 listened to the

player’s guesses through a hidden microphone and based on a predefined list of words that are semantically similar

to the correct guess, W1 would perform a measure of hot, warm or cold. The list for each answer contained

approximately 30 words, ordered alphabetically, organized into hot, and warm words and formatted in order to

provide a fast visual search by the wizard. They were gathered beforehand, both based on an online resource9, and

on the experimenters’ intuition. Any word not on the list was considered to be cold. Upon assessment, W1 would

verbally notify W2 of the result (hot, warm or cold), and W2 would use a simple WoZ interface to quickly trigger a

new posture for the robot. Both wizards were previously trained by the experimenters, both informally, and in an

initial pilot version of the study. Stable communication between the wizard-room and experimentation-room was

guaranteed by an ethernet cable and audio extension cord (about 30 meters each).

The robot plays the pantomime game with a human, on a one-to-one interaction. A word category would be

projected on a wall, and the robot would pantomime it through an animation. Participants had 40 seconds to guess

the correct word by shouting it towards the robot, and could make an indefinite number of guesses. The robot would

provide a visual feedback if they got it right (with a positive nod), or a negative nod in case the time was up. It

would then proceed to the next round. In total there were seven rounds. In the end, they were led to a private room

to answer a questionnaire.

9http://swoogle.umbc.edu/SimService/top_similarity.html (accessed January 12, 2019)
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In a physically separate room, two wizards (W1 and W2) teamed to replace an artificial intelligence capable of

quickly assessing the hot-cold quality of the participants’ guesses. W1 listened to the player’s guesses through a

hidden microphone and based on a list, would assess and verbally communicate to W2 if the guess was hot, warm

or cold. W2 was in charge of a control panel from where he could trigger (in C1) a new posture for the robot,

depending on the participant’s guess. The triggered postures, which have been illustrated in Figures 7.11 and 7.12,

were designed to convey the impression of being hot (engaged) or cold (unengaged).

7.3.3 Measures

In order to investigate our research question and test our hypothesis, we considered a set of specific subjective

measures created for our goal, another set of subjective questions taken from literature, and also objective measures

collected during the interaction with the users. There were three types of specific subjective measures: Performance,

Animation and Intention.

We considered questions concerning three types of specific subjective measures: Performance, Animation and

Intention. Performance was included to assess how well the robot was perceived to play the game. Animation was

measured looking at the following aspects: Quality, Lifelikeness, Staging, Thought and Motivation. Intention was

measured using the perception of Recognition and Legibility of the motion.

Table 7.1 presents the questions used in each specific measure.

The subjective measures taken from literature were Perceived Message Understanding and Co-Presence, from

the Networked Minds questionnaire [180], the Inclusion of Other in Self (IOS) measure [181], Perceived Adaptability

from the Almere model [182], and finally, the dimensions of Perceived Intelligence, Animacy and Likeability from

the Godspeed questionnaire [183].

All the questionnaire scales except IOS were answered in a 6-point Likert scale and when necessary, items were

shuffled to mask for their dimensions. The IOS measure was answered in a 7-point scale.

The objective measures were collected to assess the effect of our technique in the participants’ performance

through the game. For each participant we collected the Total Duration of the activity, the number of Total Guesses,

Total Hot Guesses, Total Cold Guesses, Total Correct Guesses, Total One-Shot Correct Guesses, and Total Give-ups.

A One-Shot Correct Guess was counted when the participant got the correct answer in a round as its first guess. A

Give-up was counted when the participant did not perform any guess in a round. Per each participant’s round we

also collected the Duration, number of Guesses, number of Hot Guesses, number of Cold Guesses, and number of

Correct guesses (which would either be zero or one).

7.3.4 Results

To understand if our algorithm allowed Adelino to convey an intention while gaze-tracking users, statistical analysis

was performed on the subjective data collected through the questionnaires, and the objective data collected during

the interactions. The Shapiro-Wilk test was used to test of distributions are normal or non-normal. Where normal

distribution existed, we performed a t-student for independent samples. When the normality assumption was not

met we used a Mann Whitney U test.

Table 7.2 shows the results for all the subjective measures and sub-measures. We have highlighted the measures
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1. Performance

1.a. The robot was good at pantomiming the words.
1.b. I was able to think of words that were perhaps being pantomimed by the robot.

2. Animation

2.1. Quality

2.1.a. During the pantomime, the motion of the robot seems natural.
2.1.b. The robot’s movement while I was attempting to guess were smooth and natural.

2.2. Lifelikeness

2.2.a. The robot seemed to be alive.
2.2.b. The robot reminded me of the characters I know from movies.

2.3. Staging

2.3.a. The robot performed the pantomimes in a way that it was easy for me to see what he was doing.
2.3.b. The robot was moving in tune with me while I was trying to guess the correct answer.

2.4. Thought

2.4.a. The robot seems to understand the concept of the words it was pantomiming.
2.4.b. The robot thought of every word before it performed the pantomime.

2.5. Motivation

2.5.a. The robot was enthusiastic with my attempts to get the right answer.
2.5.b. The robot wanted me to get the right answer.

3. Intention

3.1. Recognition

3.1.a. The robot gave me tips while I was trying to guess the right answer.
3.2. Legibility

3.2.a. I was able to understand, through the robot’s tips, if I was far or close to the right answer.
3.2.b. The robot’s tips seemed coherent with my guesses.
3.2.c. The robot’s tips helped me to get the right answer.

Table 7.1: The questions used in each specific measure on the Ahoy study.
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* reports significant
differences

Shapiro-Wilk Statistics T-Test Mann-Whitney

Measure C Sig NormalMin Max Mean SD t ρ U ρ

Performance 1 0.140 yes 2 6 3.875 0.872 0.983 .332
Mean 2 0.334 yes 1 5 3.600 0.897

Animation 1 0.576 yes 1 6 3.635 0.995 0.606 .548
Mean 2 0.242 yes 1 6 3.455 0.879

Animation 1 0.525 yes 1 6 3.400 1.273 0.888 .380
Quality 2 0.075 yes 1 5 3.075 1.030

Animation 1 0.128 yes 1 6 4.000 0.973 -0.335 .740
Lifelikeness 2 0.132 yes 1 6 4.125 1.356

Animation 1 0.280 yes 1 6 3.575 1.030 2.165
Staging* 2 0.445 yes 1 5 2.900 0.940 .037

Animation 1 0.072 yes 2 6 3.650 1.137 0.998 .325
Staging.a 2 0.055 yes 1 5 3.300 1.081

Animation 1 0.094 yes 1 6 3.500 1.469 123.5
Staging.b* 2 0.027 no 1 5 2.500 1.277 .034

Animation 1 0.093 yes 1 6 3.350 1.479 -0782 .439
Thought 2 0.286 yes 1 6 3.675 1.127

Animation 1 0.097 yes 1 6 3.850 1.299 0.877 .386
Motivation 2 0.075 yes 1 6 3.500 1.225

Intention** 1 0.393 yes 1 6 2.838 0.779 3.195
Mean 2 0.062 yes 1 5 2.088 0.704 .003

Intention 1 0.038 no 2 6 3.450 1.317 105.5
Recognition** 2 0.021 no 1 5 2.350 1.040 .008

Intention 1 0.299 yes 1 6 2.633 0.864 2.569
Legibility* 2 0.122 yes 1 4 2.000 0.684 .014

Godspeed 1 0.021 no 1 6 4.058 0.660 117.0 .024
Animacy 2 0.179 yes 1 6 3.642 0.565

Godspeed 1 0.087 yes 1 6 4.680 0.691 1.554 .129
Likeability 2 0.169 yes 1 6 4.340 0.693

Godspeed 1 0.612 yes 1 6 4.090 0.706 0.227 .821
Perceived Intelligence 2 0.889 yes 1 6 4.040 0.686

Networked Minds 1 0.010 no 3 6 5.48 0.557 195.5 .902
Co-Presence 2 0.006 no 3 6 5.47 0.533

Networked Minds 1 0.221 yes 1 6 3.630 0.832 0.687 .496
Perceived Message

Understanding 2 0.243 yes 1 6 3.440 0.852

Almere 1 0.502 yes 1 5 3.050 0.975 0.829 .412
Perceived Adaptability 2 0.221 yes 1 6 2.820 0.798

Inclusion 1 0.034 no 2 6 3.60 1.273 160.0 .268
Inclusion of Other 2 0.216 yes 1 6 3.10 1.447

Table 7.2: Statistical data and significance test results for all measures and sub-measures, plus a granularization of
the Animation Staging measure.
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that reported statistically significant results (p − value < 0.05) by marking the measure with an asterisk (*) in

the first column, and by coloring its ρ value in yellow. A double asterisk (**) reports a p − value < 0.01. The

green-and-red coloured column indicates solely if the distribution is normal (green) or not (red).

Regarding the specific subjective measures, we expected to find significant differences in the Intention measure.

However, we also expected that all the other measures would not be affected by our algorithm, supporting solely that

the participants of C1 should perceive the robot to have the intention of providing hints, while those of C2 had not.

We immediately start by verifying that the Intention Mean measure (mean of both Recognition and Legibility),

revealed a significant difference between the two conditions, showing that in C1 the hint-providing intention of

the robot was perceived to be higher than in C2. However, given that the mean value for C1 was not very high we

also analysed the Intention Recognition and Intention Legibility measures in separate. Both presented significant

differences between conditions, with Recognition providing a much more accentuated result.

Neither Performance Mean nor Animation Mean presented significant results between conditions. That means

that the use of the expressive postures in this scenario did not make the robot seem either better at playing the

game, nor more animate, and both of these measures had positive results. When we broke down the Animation

sub-measures, we did however find a significant difference between conditions for the Staging measure.

Regarding the non-specific subjective measures taken from literature, only the Animacy dimension of the

Godspeed questionnaire reported significant differences between the two conditions. As to the objective measures,

differences between conditions were reported only for the Round-measures Duration, Number of Guesses and Hot

Guesses in Round 3.

Figures 7.15-7.16 summarize the objective data collected throughout the interactions. These graphs concern the

average of all the complete sessions.

Figure 7.14: Objective data from the Ahoy study: mean duration of each session, per condition.
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Figure 7.15: Objective data from the Ahoy study: Mean value of each objective measure (except Total Duration),
per condition.

(a) Average number of Guesses, per round. (b) Percentage of participants able to guess the Correct word,
per round.

(c) Average number of Hot guesses, per round. (d) Average number of Cold guesses, per round.

Figure 7.16: Objective data from the Ahoy study: analysed per round.

7.3.5 Discussion

The data collected through the Ahoy study provides evidence to supported all of our hypothesis. H1 is supported

given that there were no significant differences between conditions for the Performance measure, and H2 for the

Animation measure. In particular, related with H1, although the mean scores were not very high, we still found that

the use of our algorithm did not bias the perception how well the robot played the game. H3 and H4 are supported

as both the Intention-Recognition and Intention-Legibility measures rendered significant differences.
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Figure 7.17: The results collected from the specific measures. An asterisk (*) reports a p − value < 0.05. A
double-asterisk (**) reports a p− value < 0.01.

Subjective Measures

The results collected for the subjective specific measures are presented in Figure 7.17. Individually, we feel that

most of these measures and sub-measures did not report strong values, i.e., the mean values are not very far from

the scale’s median value, and on some cases are even below.

Regarding the measure of Performance

The positive results from the Performance measure suggest that the pantomimed animations were well designed for

the purpose (as it was perceived to play the game well). This measure yielded a mean of 3.74, which statistically

might seem just slightly over the scale’s mean. However, considering that this measure aimed at the robot’s ability

to play the game, we should interpret the results monopolarly, and not bipolarly, meaning that a total lack of ability

would be reflected as the scale’s minimum value (1). Therefore a value of 3.74 as a reflection of the robot’s ability

to play, albeit not being great, can still be interpreted as being good, thus still supporting H1’s statement of “play

the game well”.

Regarding the measure of Animation

The positive results from the Animation measure suggest that the robot was well designed, and that the IK algorithm

(regardless of the demonstrated posture) yielded smooth, natural results, and that the dynamic gaze-tracking

behaviour was well perceived. This measure yielded a mean of 3.55, just above the scale’s mean, which can be

considered as just enough to argue for the illusion of life. By analysing the sub-measures’ means we find that

Lifelikeness and Motivation both yielded above-average means (4.06 and 3.675 respectively), while the poor results

of Staging in particular, brought the whole measure down. Staging had two questions (see Table 7.1) related to how

the robot was positioning itself for the participant (thus addressing the Staging animation principle). We therefore

separately analysed the results for each question and found a significant difference only on the second one. The

first question addressed how well the animations had been designed so that the participant could understand them,

and yielded good results with no significant differences across conditions. The second had been defined to address

the quality of the gaze-tracking. However, after we found participants to rate this questions significantly lower in

C2 than in C1, we realized that the participants in C1 may have interpreted the movement in tune as the posture

changes that the robot performed in order to provide them hints. Moreover, because most participants would actually
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stand still in front of the robot (as seen in recorded video), the gaze-tracking behaviour may have not been very

apparent, and thus also lead to lower ratings in C2 (where the robot would not even perform posture shifts). Further

investigation is would be required to properly conclude on this sub-measure. If we disconsidered this sub-measure,

the whole Animation measure would yield a mean of 3.62.

The low results of the Quality sub-measure may have also been due to the rudimentary design and build of

the robot, which causes a lot of jitter. However, the robot was purposely designed and built that way in order to

challenge the sturdiness of the animation algorithms. Our initial intention was to see how good the software was

with nearly the worst-quality embodiment, meaning that with simple enhancements (e.g. better quality servos), we

would expect to see an increase in the Animation Quality measure.

Regarding the measure of Intention

While the measures and sub-measures related to Intention all yielded significant differences between condition,

the overall values were not high. We can see that the sub-measure of Intention-Recognition had in general, higher

results than the sub-measure of Intention-Legibility, meaning that it was more obvious for the participants in C1 that

the robot was trying to provide them hints, than it was for them to relate those hints to their own guesses. Although

these results did support our hypothesis, further development and investigation is required to understand what can

be done to allow the robot to convey a stronger intentionality through its expressivity.

Some participants were informally approached after completing the experiment and filling in all the question-

naires. While no formal interview was made, several participants mentioned that there was some latency between

their guesses, and them noticing the change in posture of the robot. Given the nature of the pantomime game, they

would expect the robot to respond immediately as a human did, and as such, did not always connect the robot’s

movement with what they had just guessed. Some unstructured observation was performed during the preliminary

pilot testing sessions where we accessed the robot’s latency in response to a guess, to be around 1 to 2 seconds,

depending on the participant’s guess. While we did design a double-wizard setting in order to minimize this latency,

it was still faster for the Wizards to recognize that a word was hot (i.e. find it in the list), than it was to access that it

was cold (i.e. finding that it was not on the list).

Although we theorize that an autonomous system could have mitigated the latency, we went for a Wizard-of-Oz

solution due to the open-ended lexicon of this game, and also in order not to have to constrain the participants to

wear a microphone. Further studies will target an autonomous system, in a different scenario where we will take

these lessons into account.

Subjective Measures from Literature

The results collected for the subjective measures taken from literature are presented in Figure 7.18. Within the

non-specific measures, some had been considered in order to bring additional support to the specific Intention

measure, while other were considered in order to support the specific Animation measure.

Supporting the specific measure of Animation

Within the Godspeed questionnaire we found only the dimension of Animacy to report significant differences

between conditions. We initially expected no differences to be reported for this dimension, just as there were none

154



Figure 7.18: The results collected from measures taken from literature. An asterisk (*) reports a p− value < 0.05.
A double-asterisk (**) reports a p− value < 0.01.

for our specific Animation measure. However, we understand that these differences can reasonably be attributed to

the fact that in C1 the robot would change postures frequently, thus moving more and this also conveying a higher

sense of Animacy (MC1 = 4.058, SDC1 = 0.660;MC2 = 3.642, SDC2 = 0.565). It is important however, to note

that in order to support our hypothesis, we attribute more importance to the specific measures than to the Godspeed

measure. That is because Godspeed is meant for general assessment of the perception of a robot by users, for which

the Animacy dimension seems coherent in our scenario. The robot’s behaviour in C1 was in fact more active and

animate. The questions for our specific measures were purposefully designed to capture the general perception of

the robot as an animated character, based on animation principles, regardless of it being more active in one condition

than in the other.

The Likeability dimension of Godspeed could be argued to support the Animation measure. It did not report

significant differences between the conditions, and reported good results (M = 4.510, SD = 0.705).

Within the Networked Minds questionnaire we found only Co-Presence to yield very high results, (M = 5.471,

SD = 0.538) with the scale maximum being 6. This was a positive finding that could actually be brought in to

support the Animation measure. Because there was no verbal communication with the robot, we could attribute the

whole of this measure’s imputation to the design of the robot’s behaviour and its execution through animation.

Supporting the specific measure of Intention

All the other measures of Perceived Intelligence, Perceived Message Understanding, Perceived Adaptability and

IOS were considered to maybe support the Intention measure. We expected to find differences between conditions,

as in C1, the robot’s ability to non-verbally respond to the player’s guesses would result in the perception that the

robot was more intelligent, more able to understand and adapt to the player in that condition, and also to create a

closer sense of proximity. Although the means for all of them were lower in C2 than in C1, the differences were not

statistically significant to increase the support of our hypothesis. This can be because the questionnaires were not

specifically designed to support the measure of the robot’s intention during a task such as the one of our study.
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Objective Measures

The objective measures collected presented (Figure 7.16)no relevant differences among conditions. Although

statistically significant differences were reported on some measures in one of the round, we considered it to be an

isolated occurrence most likely due to a small sample size. Moreover, Round 3 was noted to be the most complicated

round because most people were unaware of what the pantomimed word was at all (it was a Metronome, a device

used during musical training). Not only did we see only one participant to be able to guess the word, but during

informal post-experimental conversation with some participants, most of them asked us what it was. Therefore we

should not draw conclusions regarding any factor reported solely on Round 3. The fact that there were no other

differences reported means that while the participants in C1 did perceive that the robot was trying to help them,

in the end that help did not translate into a better outcome for the participants’ performance in the game. It was

unknown for us whether or not to expect differences in this matter. While it would have seemed positive to have

differences reported regarding the participants’ performance, those differences would possibly bias the perception

of the robot’s intention by the users. In that case, one could argue that, had the participants in C1 reported a better

score, it might have been not because they really understood the robot’s intention during the interaction, but instead,

felt that the robot was helping, solely because they had achieved a higher success rate.

The fact that our data showed no relevant significant differences actually means that we can fully attribute the

results from the questionnaires to the robot’s expressivity, thus further supporting our hypothesis.

7.4 AvantSatie - The Piano Game Companion

After analysing the results and conclusions from the Ahoy scenario, we became interested in studying the use

of ERIK in a more realistic and fully autonomous setting, by studying not only the robot’s ability to convey a

recognizable expression, but more importantly, its ability to direct the user’s choice of action in a problem-solving

task. In the previous evaluation the players were standing still which fails to validate the algorithm’s ability to

express a given posture towards different directions. Furthermore, the queues were used to try to direct the players

towards the correct answer in a pantomimic game, which took an open input (through speech), and required the use

of Wizards to listen and decide on the robot’s reactive expression. In that scenario, the robot seemed to be more like

part of the riddle, than as part of a solution to it. We therefore drew a new goal of understanding if the technique can

actually be used in a collaborative scenario in which users solve a problem that is independent of the robot, but in

which the robot’s expressive behaviour may take a role in assisting the user, by providing expressive queues that

facilitate the user’s action selection.

The new question we therefore posed to address is:

Can ERIK be used to provide expressive behaviour to an autonomous face-tracking articulated robot, in

order to convey a utilitarian intention to the user and direct its action selection within a task, while also

conveying the illusion of life?

For that purpose we established the following requirements for the new evaluation scenario:

• The robot must be fully autonomous, in order to evaluate ERIK based on its actual response-time;
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• Users must be forced to move around in order to fully evaluate the expressive gaze-tracking behaviour;

• The task must be a non-subjective problem-solving one, and must be solvable even without expressive

queues (hints) through a trial-end-error method, however such hints should allow to solve it with significantly

less errors.

Because we thought Adelino’s design was still appropriate for our evaluation, we decided to use the same robot

as in the previous one, given that our major concern was on the actual evaluation’s activity design and conclusions,

and not on the use of this particular robot. In fact, if the claims do stand, then our opinion is that Adelino may also

represent a breakthrough in robot design for HRI and inspire future generations of robots.

7.4.1 Avant Satie - Game description

AvantSatie is a pervasive game where players must discover the musical score of a piece using a floor piano where

they can step on to play notes. To help them in the game, they interact with an autonomous Adelino robot that will

help them discover which notes compose the musical scores of two different pieces (each piece corresponds to a

level). By interacting with the piano, observing the robot and following the instructions, participants either adopt a

trial-and-error process, or track the robot’s hints, to discover each successive note. The game’s set-up is illustrated

in Figure 7.19a along with a shot of an actual experimental session (Fig. 7.19).

(a) The concept set-up of the AvantSatie game. (b) The set-up of the AvantSatie study.

Figure 7.19: The setting of the AvantSatie scenario and study.

The fully autonomous robot enriches the setting of the game by providing the story as well as being socially

present by performing compound-gazing. The robot’s gazing behaviour combines both a face-tracking feature, and

deictic gazing towards specific piano keys. At the same time, the robot is expressive and can shape its posture while

gazing, in order to convey hints to the player. Through the understanding of such hints, players can play the game

while minimizing the amount of mistakes performed through the trial-and-error gameplay. Yet, if they don’t pay

attention to the robot, their task in the game becomes much more difficult. The game was designed and iteratively

tested with users in pilot studies, in order to ensure that the instructions and gameplay were clear, instead of relying

on initial instructions given by the experimenters, which could introduce biases.

As the game is about discovery, the scores and composition are initially unknown to the player. Therefore, they

must attempt to play keys on the piano until they find each correct note. Because the robot’s behaviour is fully

non-verbal, a screen is projected behind it, providing basic instructions and progress (e.g. current level and part).
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Figure 7.20: A diagram of the game-flow of Avant Satie. There are two levels, composed of a sequence of stages.
Each stage is composed of a a challenging activity (Guessing) followed by a rewarding activity (Replay), with each
level ending with a greater reward (Full Replay).

The structure of the game-play is outlined in Figure 7.20. There are two levels in the game, which correspond

to two musical compositions, each one with distinct levels of difficulty. Each level (music) is split into stages,

which we called Parts, as that term fits better in the context of the game (e.g. the music in Level 1 is composed of

4 Parts/Stages). Each Part contains a sequence of one to six individual notes to be discovered one by one in the

correct order.

Figure 7.21 shows some shots of the AvantSatie screen throughout the game. Additionally, here we present

shots of the English version, while the study was ran using the Portuguese version (as can be seen by comparing

with Figure 7.19.b).

The start screen requires the player to interpret a piano figure and to interact with the floor piano (fig. 7.21.a),

upon which the robot performs an affirmative animation, i.e., nodding as if trying to say "yes!" (first positive

feedback). This ensures that the player understands the basic interaction pattern of the activity (i.e., screen displays

instructions, playing the piano triggers a reaction on the robot). It then follows with a little storyline and instructions

on how to play (fig. 7.21.b). Because Adelino is designed and animated as a fully non-verbal character, we relied

on the screen to present in-game instructions, which also helps to immerse the player into the activity (versus

having provided instructions prior to the activity). Whenever an instruction screen is being presented (e.g. fig.

7.21.b) the robot turns to face the screen, as a mechanism to direct the player’s attention to it (otherwise due to

enthusiasm, the player might just be analysing the robot and overall set-up). This also adds to a feeling of presence -

the robot is aware both of the player and of its surroundings (i.e. the screen - a point of shared attention). When the

first instruction set is over, the robot turns back towards the user and plays the affirmative animation again. This

animation is later used throughout the game, so it was important to initially reinforce it as a positive feedback.

On the first Stage of all, the player is presented with no information except for the instruction "Discover the
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1st note!" (fig. 7.21.c). While the player is performing his/her attempts, the robot only performs face-tracking

behaviour. Upon playing some note, the robot assesses it as the player’s guess. If it is correct, the robot performs the

affirmative animation, after which the screen progress updates to e.g. "Discover the 2nd note!", and the robot goes

back to face-tracking. This way we manage to keep the player’s visual attention focused on the robot instead of

the screen, as the robot always provides feedback before the screen does. These steps repeat until all the notes of

the current Stage are found. After the player has discovered all the notes of the current Stage, the robot replays all

the Stage’s notes, while pointing at each corresponding piano key, and then instructs the user to repeat it, with the

screen exhibiting an illustration of the piano, highlighting each note, so that the player can unequivocally follow (fig.

7.21.d). This Replay phase serves as a reward to the player for having struggled to discover the composition. Each

level was therefore built as a sequence of Challenging-Rewarding phases in order to maintain the user’s engagement.

At the end of each level the player gets to replay the full Level’s composition as a bigger reward (fig. 7.21.e-f). The

name of the piece and composer is revealed, and the player replays each part as before, but successively.

7.4.2 Study Conditions

The main purpose of this experiment was to find out if ERIK could be used to introduce extra task-directed

information that would be conveyed fully through its posture, while it is gaze-tracking the player. For that, we

compared three versions of AvantSatie.

In version C-ERIK and C-EBPS, Adelino would respond to each of the player’s guesses by modifying its

posture based on a "hot-cold" heuristic. Upon each wrong guess the robot would therefore shift its expressive

posture to either Hot or Cold, while keeping the gaze-tracking behaviour towards the player.

We did not initially mention that the robot would perform this type of behaviour. Instead, it was expected that

during the first minutes of the game (i.e. the Tutorial level), the players would notice that the robot was performing

some behaviour that seemed congruent with their guesses, and would learn how to read the robot’s posture in order

to score better in the game.

The difference between C-ERIK and C-EBPS is purely technological - in C-ERIK we used ERIK to perform

the gaze-tracking with expressive posture. For C-EBPS we created EBPS, a non-IK example-based posture synthesis

technique for which we previously authored a large number of postures for each Hot, Neutral and Cold expressions,

each posture representing a pair (expression, direction), which sets the robot facing through a range of directions

that are expected for this game. In run-time, given the face-tracking information, we take the two postures that

represent the directions that are closest to the target one and interpolate them. In our pilot studies we verified that

this technique provided very smooth and acceptable results, by creating postures for each horizontal direction from

-70° to 70° with 10-degrees interval between them, which leads to 15 postures per expression, for each vertical

direction. We initially considered to use 3 or 4 vertical directions, but upon testing realized that 2 would be enough,

and that the interpolation between the two extreme vertical positions yielded acceptable results. The two vertical

directions for which the postures were created were at 0° (looking straight ahead, i.e., to the horizon) and 80°

(upwards).

We note that, while the end-result looked similar to the one we wanted to achieve with ERIK, it required a

considerable amount of work to create all those postures; furthermore if we wanted to modify one of the expressions,

we would have to re-create all the postures for that expression. Using ERIK only requires to author one single
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Figure 7.21: Various screenshots of the projected screen of the AvantSatie game: a) The first screen that is presented
to the player. b) After the first screen, the player is instructed on how to play. c) While guessing the notes in Level
#1. d) Replaying a Part of level #1, including the instruction which is presented only on the first Replay phase, and
the Part transition screen. e) Replaying and completing the full level #1. f) Some excerpts of a Part replay and the
level replay for level #2.
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Figure 7.22: Pictures of the three different postures used by Adelino in the AvantSatie scenario. These postures are
the actual output of ERIK as used in the game, while gazing forward, and not a set of static pre-designed postures.
The top row shows a frontal view, while below each is its corresponding side view. The postures represented are:
left - Neutral; center - Hot; right - Cold. The postures used in C3 are not depicted, but are very similar to these, as
they were designed so that both conditions would seem alike.
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posture per intended expression.

Finally, C-Control differs from the other two conditions by not performing any posture-expressive behaviour

at all. The whole game is exactly the same, and the robot also performs gaze-tracking behaviour, but upon each

guess, it never changes its posture from the initial Neutral one. Therefore the players rely solely on trial-and-error to

discover all the notes. Technologically though, C-Control still uses ERIK to perform gaze-tracking, while always

holding the same, Neutral posture.

7.4.3 Study Design

The study followed a between subjects design with random assignment within the three different conditions. In all

conditions the game design follows the same structure, with the same levels and tutorial information. As detailed in

the previous subsection, the differences apply only to the Guessing phases. Upon assessment of a player’s guess,

the result can be Correct if the player found the correct note at this point of the game; WrongHot if the player

guessed wrong, but is moving towards the Correct one; or WrongCold if the player guessed wrong, but is moving

away from the Correct one.

Whenever the player’s guess is not Correct:

• C-ERIK: the robot uses ERIK to portray a Hot or Cold expression to the player;

• C-Control: the robot uses ERIK to hold the Neutral pose (does not portray a Hot or Cold expression;

• C-EBPS: the robot uses the EBPS method to portray a Hot or Cold expression to the player;

In any case the robot always maintains the face-tracking behaviour throughout the Guessing phases. Therefore

tracking is blended with postural expression using either the ERIK algorithm (C-ERIK, C-Control), or the EBPS

method (C-EBPS).

In order to address our research question, we established the following hypotheses:

• H1: Players in C-Control will play worse than in C-ERIK and in C-EBPS.

• H2: Players in C-ERIK will play at least as well as in C-EBPS.

• H3: The robot is perceived to convey the illusion of life in all conditions.

• H4: The robot is perceived to convey the illusion of life more in C-ERIK and C-EBPS than in C-Control.

• H5: The players are able to perceive the robot’s intention and motivation as being towards helping the player

in both C-ERIK and C-EBPS but not in C-Control.

• H6: The game is understandable and the robot is perceived to play well in all conditions.

The first hypothesis H1 is expected to be confirmed given that in C-ERIK and C-EBPS, players should be

able to self-assess their own guesses, by observing and interpreting the robot’s expressive behaviour. The same

argument also applies to H5, albeit they are based on different measures (H1 is objective, H5 is subjective). For

C-Control, we expected that players would either play fully through trial-and-error, look for but fail to interpret

any information from the robot’s expression (which is correct), or that they would wrongly interpret the robot’s

face-tracking behaviour as being related with their guesses. In any case, the players in C-Control are expected
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to perform randomly, given that there was no available mechanism for self-assessment of their performance

throughout the game. The hypothesis H2 is also expected to be confirmed given that although C-EBPS provides

more consistent pre-designed poses, C-ERIK should still be able to convey the same contextual information using

the ERIKalgorithm.

We also expect to confirm H3 and H4 given that we have tailored this experiment to detect only differences

regarding the perception of the robot’s hint-providing intention along with its motivation of wanting the

player to succeed, in C-ERIK and C-EBPS. However, by having endowed the robot with the expression of thought

and motivation [31] in C-ERIK and C-EBPS, we expect that to contribute to higher scores in those conditions as

compared to C-Control.

Finally, it is important to verify that neither the inclusion nor the lack of the hint-providing behaviour hinders

the player’s ability to understand and play the game (H6), which could potentially lead participants to rate the whole

scenario (including the robot) with lower scores.

7.4.4 Sample

For this study we recruited a total of 59 university students (30 females and 29 males) with ages ranging from 18 to

35 (M = 22.78; SD = 3.96). From these, two were excluded due to not complying with the instructions, thus yielding

a total of 57 valid participants, which resulted in a balanced distribution of 19 participants per condition. 19% of the

participants had already interacted with a robot before once, and 37% more than once. Regarding their knowledge

of music, 42% reported a low to no level of expertise playing some musical instrument, while 39% reported an

intermediate expertise, and 19% an advanced expertise. As for experience reading sheet music, 63% reported a low

score, 25% an intermediate score, and 12% declared to be experts. It became clear that our sample contained a high

level of musically-instructed participants, which we attribute to the dissemination of the study in which participants

were requested to play a game using a floor piano, through a flyer shared via social-media networks.

7.4.5 Procedure

Upon arrival, the participants filled out the consent form in a separate room before being led to the game room.

There they were given the same initial instructions, without revealing that the robot would indicate the result of their

guesses through a change in posture. Instead they were solely informed that there would be two simple compositions

to discover, that they should perform each guess and observe the robot, until they were able to discover all the

notes, and otherwise just follow the instructions on screen. While this gave them a tip that the robot might perhaps

help them, we ensured that each player would perform their own interpretation about the way the robot moved,

by understanding the relationship between the robot’s expression and their guesses. This also ensured that all

participants had been hinted to look at and try to interpret the robot, in all conditions. The researcher would direct

them to enter the room and start interacting without following them, as the robot was already active and would start

face-tracking them once they stepped into the Kinect’s field of view. This ensured that the participants noticed it

immediately as an autonomous entity and would become immersed into the game. The screen provided the starting

instruction, which was to play a D note on the floor piano, along with an icon showing explicitly which key that was.

Therefore it was the participant who took the step to initiate the game, while also ensuring that they understood the
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piano to be a controller for it. When finished, the participants were taken back to the initial room, administered a set

of questionnaires, and received a thank-you gift (a movie ticket) at the end.

7.4.6 Measures

To represent our sample, demographic information was requested in the questionnaires (gender, age, previous

interaction with robots and level of expertise in both musical instrument playing and score reading capabilities). In

addition, all participants, responded to the following questionnaires:

• Networked Minds [180] scale (NM), from which we took the Perceived Message Understanding (PMU) and

the Co-Presence (CP) dimensions to measure the degree to which the participant believes s/he is not alone,

i.e., that the robot is present as a social entity (CP dimension), and that its communicative behaviour was

clear and understandable (PMU dimension);

• Inclusion of Other in Self [181] scale was used to measure the closeness that the participants felt between

them and the robot (measure IOS);

• RoSAS [184] scale was used to measure the participant’s perception of the robot’s social attributes regarding

Competence, Warmth and Discomfort (dimensions RC, RW and RD);

• Perceived Adaptability (PA) from the Almere model [182] which measures the perceived ability of the system

to adapt to the needs of the user;

• Robot’s Performance & Usability (RPU) scale was used to measure how well the participants felt the robot to

be able to play the game, and how well the overall gameplay was designed;

• Robot’s Intention & Motivation (RIM) scale was used to measure how much participants felt the robot was

there to provide tips and how much it wanted to succeed in helping them;

• Animation Illusion of Life (AIL) scale was used to measure the illusion of life of the robot.

The questionnaires for the RPU, AIL and RIM scales were specifically designed to address our research question,

and carefully written in order not to bias the participants’ assessment of the robot’s animation qualities throughout

the variations of the robot’s behaviour that are contained in the study. The RPU scale in particular is composed of

two dimensions:

• Task Performance (TP) measures how well the participants perceived the robot to know the game and perform

the task well;

• Task Usability (TU) measures how easy and intuitive the participants felt it was to understand the task and the

game-play interaction with the robot and the screen.

The RIM scale is also composed of two dimensions:

• Robot’s Intention (RI) measures how much the participants felt that the robot was providing hints to them

throughout the task;
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• Robot’s Motivation (RM) measures how much the participants felt that the robot’s intrinsic motivation (i.e.

purpose) was to help them (by providing hints).

Table 7.3 lists the questions used for each of these measures.

All the questionnaires were answered in a 6-point Likert scale except for the RoSAS, which was answered

in a 9-point Likert scale, and the IOS measure which was answered in a 7-point pictorial scale. The RD scale is

negatively-scored, i.e., lower scores in the questionnaire mean better scores. Therefore in our analysis and results

presentation, we have corrected the data (by inverting the scale) in order to present and compare its data as it were

also a positively-scored scale. All items were shuffled to mask for their dimensions.

RPU (TP + TU) - Robot’s Performance & Task Usability

TP1. The robot knew where each note of each music was.

TP2. The robot always understood what note I had played.

TP3. The robot knew each music very well.

TP4. The robot knew every music by heart.

TU1. I had to look at the screen to know what happened at each moment.

TU2. I wouldn’t understand the game without looking at the screen.

TU3. The game screen had all the info I needed to understand the game.

TU4. I had to follow the screen to know what to do.

RIM (RI + RM) - Robot’s Intention & Motivation

RI1. I wouldn’t have understood the game without the robot.

RI2. I managed to find the correct notes thanks to the robot.

RI3. I wouldn’t have discovered the musics without the robot’s help.

RI4. The tips that the robot gave me helped me to find the correct notes.

RI5. The robot’s tips were consistent with my attempts to find each correct note.

RI6. The robot gave me tips while I was trying to find each correct note.

RI7. I was able to understand if I was close or far from the correct note thanks to the robot’s tips.

RM1. The robot wanted me to find the correct notes.

RM2. The robot wanted me to discover all of the musics.

RM3. The robot was enthusiastic with my attempts to find the correct notes.

RM4. The robot thought about helping me.

AIL - Animation Illusion of Life

AIL1. The robot’s movement was smooth and natural.

AIL2. The robot seemed to be alive.

AIL3. The robot reminded me of characters I know from movies.

AIL4. The robot’s motion followed my rhythm.

Table 7.3: Questionnaires used for the RPU RIM and AIL measures in AvantSatie.

The following objective data was also collected during each session, and measured only during the parts of the

game in which the players were performing guesses:

• Time spent guessing;

• WrongHot number of incorrect guesses which were however assessed as Hot;
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• WrongCold number of incorrect guesses which were however assessed as Cold;

• WrongTotal aggregates WrongHot and WrongCold.

7.4.7 Results

Throughout the presentation and analysis of the results, we will be considering each measure’s average across each

of the different three conditions, plus an extra C-Enhanced group which averages the measures of both C-ERIK

and C-EBPS in order to treat them both as a single group.

We started by verifying the internal consistency of the scales by measuring the Cronbach’s alpha (α) and the

MacDonald’s omega (ω) for each measure, as shown in Table 7.4, and considered an optimistic selection of the

result, i.e., we considered the scale reliable as long as either alpha or omega are above the threshold value of 0.7.

AIL 0.708 0.721 0.577* 0.630* 0.577* 0.602* 0.770 0.779 0.559* 0.606*
RIM 0.899 0.935 0.887 0.935 0.890 0.944 0.863 0.925 0.857 0.911
RPU 0.731 0.850 0.755 0.902 0.744 0.907 0.728 0.853 0.728 0.861
NM 0.870 0.924 0.847 0.930 0.891 0.956 0.835 0.914 0.866 0.923
PA 0.732 0.785 0.804 0.884 0.569* 0.656* 0.773 0.795 0.698* 0.773

RW 0.727 0.845 0.626* - 0.731 0.858 0.553* 0.768 0.750 0.873
RC 0.900 0.938 0.869 0.949 0.860 0.957 0.922 0.973 0.864 0.928
RD 0.648* 0.826 0.568* 0.840 0.405* 0.495* 0.748 0.939 0.441* 0.604*

ri 0.924 0.959 0.929 0.971 0.887 0.960 0.889 0.943 0.908 0.961
rm 0.698* 0.759 0.317* 0.548* 0.570* 0.716 0.752 0.857 0.414* 0.599*
tp 0.749 0.798 0.807 0.879 0.846 0.754 0.540* 0.667* 0.828 0.866
tu 0.694* 0.761 0.775 0.912 0.534* 0.759 0.731 0.825 0.678* 0.172*
cp 0.745 0.911 0.728 0.939 0.881 0.969 0.636* 0.828 0.791 0.923

pmu 0.872 0.930 0.788 0.898 0.935 0.979 0.836 0.903 0.867 0.935

Table 7.4: Reliability analysis of the various scales and dimensions, using Cronbach’s alpha (α) and McDonald’s
omega (ω). Green represents a reliable scale, while yellow with an asterisk* represents otherwise.

The Shapiro-Wilk test of normality was then used to verify for which measures the data was normally distributed

(ρ>0.05), as shown in Table 7.5.

Although we had three conditions and present the data in four groups, in our analysis we were interested in

comparing the means of only two groups at a time, thus we used the Student’s t-Test when the data is normally

distributed in both groups being tested, and the Mann-Whitney U test otherwise.

Table 7.6 shows the results of comparison of the means of the various subjective measures scales’ and sub-

dimensions between the different groups. These results become even better illustrated in Figure 7.23a, which shows

only the scales, and in Figure 7.23b which show only the dimensions that compose some of the scales. This level of

detail is intended to provide further insight onto the analysis and conclusion about what has caused any observed

differences (or not). Through the reading of this presentation of results, those figures may be used as a handy

assistant.

Finally, Figure 7.23c shows how each measure in each group compares to the scale’s median value, i.e., is the

average score significantly positive, negative, or neutral. In order to assess that, we took each scale’s median value

(e.g., ’AIL’ is answered in a 6-point likert scale, from 1 to 6, thus the median is 3.5), and compared the distribution

of each measure within each group, to the measure’s scale median. Whenever the data within the group followed a

normal distribution we used the One-Sample t-Test, and otherwise we used the One-Sample Wilcoxon Signed Rank
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C-ERIK C-Control C-EBPS C-Enhanced
AIL ρ = 0.219 ρ = 0.080 ρ = 0.550 ρ = 0.056
RIM ρ = 0.006∗ ρ = 0.943 ρ = 0.037∗ ρ = 0.001∗
RPU ρ = 0.050 ρ = 0.767 ρ = 0.030∗ ρ = 0.004∗
NM ρ = 0.027∗ ρ = 0.271 ρ = 0.013∗ ρ = 0.002∗
PA ρ = 0.030∗ ρ = 0.557 ρ = 0.557 ρ = 0.029∗

IOS ρ = 0.279 ρ = 0.202 ρ = 0.023∗ ρ = 0.007∗
RW ρ = 0.576 ρ = 0.989 ρ = 0.477 ρ = 0.848
RC ρ = 0.176 ρ = 0.478 ρ = 0.005∗ ρ = 0.000∗
RD ρ = 0.013∗ ρ = 0.001∗ ρ = 0.059 ρ = 0.001∗

ri ρ = 0.027∗ ρ = 0.120 ρ = 0.163 ρ = 0.003∗
rm ρ = 0.550 ρ = 0.640 ρ = 0.251 ρ = 0.066
tp ρ = 0.001∗ ρ = 0.399 ρ = 0.000∗ ρ = 0.000∗
tu ρ = 0.499 ρ = 0.326 ρ = 0.771 ρ = 0.472
cp ρ = 0.000∗ ρ = 0.004∗ ρ = 0.000∗ ρ = 0.000∗

pmu ρ = 0.121 ρ = 0.739 ρ = 0.006∗ ρ = 0.004∗

Table 7.5: Results of the Shapiro-Wilk’s test of normality on each of the subjective measures. Green marks data
which are normally distributed; Yellow with an asterisk* marks otherwise.

ERIK-Control EBPS-Control Enhanced-Control ERIK-EBPS
AIL (t = 2.23, ρ = 0.033∗) (t = 2.13, ρ = 0.042∗) (t = 2.36, ρ = 0.026∗) (t = 0.25, ρ = 0.808)
RIM (U = 310, ρ = 0.000∗) (U = 301, ρ = 0.000∗) (U = 610, ρ = 0.000∗) (U = 166, ρ = 0.683)
RPU (t = 1.43, ρ = 0.161) (U = 273, ρ = 0.007∗) (U = 507, ρ = 0.014∗) (U = 135, ρ = 0.187)
NM (U = 248, ρ = 0.048∗) (U = 286, ρ = 0.002∗) (U = 534, ρ = 0.003∗) (U = 136, ρ = 0.193)
PA (U = 250, ρ = 0.042∗) (t = 2.14, ρ = 0.039∗) (U = 503, ρ = 0.016∗) (U = 208, ρ = 0.436)

IOS (t = 1.80, ρ = 0.081) (U = 282, ρ = 0.003∗) (U = 516, ρ = 0.008∗) (U = 122, ρ = 0.084)
RW (t = 0.30, ρ = 0.766) (t = −0.07, ρ = 0.942) (t = 0.13, ρ = 0.899) (t = 0.33, ρ = 0.743)
RC (t = 2.11, ρ = 0.043∗) (U = 208, ρ = 0.429) (U = 448, ρ = 0.139) (U = 212, ρ = 0.363)
RD (U = 204, ρ = 0.508) (U = 169, ρ = 0.747) (U = 372, ρ = 0.851) (U = 214, ρ = 0.331)

ri (U = 286, ρ = 0.002∗) (t = 3.92, ρ = 0.000∗) (U = 582, ρ = 0.000∗) (U = 188, ρ = 0.849)
rm (t = 3.40, ρ = 0.002∗) (t = 3.04, ρ = 0.005∗) (t = 3.44, ρ = 0.002∗) (t = 0.23, ρ = 0.823)
tp (U = 250, ρ = 0.041∗) (U = 266, ρ = 0.012∗) (U = 517, ρ = 0.008∗) (U = 164, ρ = 0.646)
tu (t = 0.62, ρ = 0.537) (t = 2.37, ρ = 0.024∗) (t = 1.61, ρ = 0.115) (t = −1.39, ρ = 0.175)
cp (U = 246, ρ = 0.046∗) (U = 260, ρ = 0.017∗) (U = 506, ρ = 0.009∗) (U = 180, ρ = 1.000)

pmu (t = 1.82, ρ = 0.077) (U = 286, ρ = 0.002∗) (U = 529, ρ = 0.005∗) (U = 127, ρ = 0.121)

Table 7.6: Results of the comparison of means tests on each scale of the subjective measures. Green with an asterisk*
marks comparisons which are significantly different.

test. Therefore the interpretation of the figure is as following: if the average of a measure’s score within a given

group is significantly above the scale’s median, then the score is considered to be positive. If it is significantly below

the median, then it is considered to be negative. Otherwise, no conclusion can be drawn on the score’s polarization

and therefore it is considered to be neutral.

While analysing the results in the next subsections we will be especially interested in identifying common types

of differences regarding the comparison between groups. In order to make the reading and interpretation easier to

follow, we have gathered the following cases:

Strong Expressivity Difference (Strong E-D) : Significant difference between the C-Control and all C-ERIK,

C-EBPS and C-Enhanced groups, with no difference between the C-ERIK and C-EBPS conditions. These

findings will be attributed to the inclusion of the postural/intention-expressive behaviour in the activity,

regardless of its technical implementation.
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Soft Expressivity Difference (Soft E-D) : Significant difference between the C-Control and the C-Enhanced

groups, and also between C-Control and just one of either C-ERIK or the C-EBPS condition. These findings

will also be attributed to the inclusion of the postural/intention-expressive behaviour in the activity, but with

an indication that one of the technological implementations may have performed better in some aspect.

Technological Difference (T-D) : Significant difference between the C-Control and either the C-ERIK or the

C-EBPS, but not between the C-Control and the aggregated C-Enhanced group. These findings will be

attributed to some difference in the technological implementation only.

7.4.8 Regarding the Subjective Measures

Within the various subjective measures used in our study, we draw the following statements (follow using Figure

7.23):

AIL, RIM, NM and PA all reported significantly lower scores in C-Control with a Strong E-D.

RPU reported a significantly lower score in C-Control with a Soft E-D.

IOS, RC reported a significantly lower score in C-Control compared to C-EBPS with a T-D.

RPU, NM, RC and RD all reported positive scores in all groups.

AIL and RIM reported positive scores in all enhanced groups, and neutral in the C-Control group.

PA, IOS and RW are inconclusive regarding the polarity of the scores, given that they show mixed results.

Within the dimensions that compose these scales (Figure 7.23b), we can verify as expected based on the RIM

and NM results, that the ri, rm, cp and pmu dimensions all report the same Strong E-D. However the RPU scale

had reported only a Soft E-D. Analysing further, we can see that the tp dimension (robot’s Task Performance) did

exhibit the expected Strong E-D, while the tu dimension (Task Usability) reported only a significant T-D between

the C-Control and the C-EBPS conditions.

Regarding the polarities of the scales and its sub-dimensions, we find that the the Illusion of Life scale (AIL)

and the RIM scale both reported a positive score in all groups except C-Control, where it scored neutral. These

two scales are at the core of our research question. We further have a very interesting finding within the RIM

scale, that regarding the Robot’s Intention (ri), the C-Control scored significantly negative while all the other score

positively (and not neutral). This is a very strong difference (which had already been pointed out in the comparison

of means). Similarly, albeit with a smaller difference, the Robot’s motivation (rm) and the Networked Minds’

Perceived Message Understanding (pmu) were also perceived to be neutral in C-Control, while in all the others it

was positive. Finally it is important to note that while the RPU scale was positive across all groups, we found that

this was mostly due to the perceived robot’s Task Performance (tp), as the Task Usability (tu) dimension scored

significantly neutral on all groups, except on C-EBPS where it scored positively.

168



(a) Comparison of the scores of the subjective measures’ scales.

(b) Comparison of the scores of the dimensions used to compose some of the subjective measures’ scales. ri and im compose the
RIM scale. tp and tu compose the RPU scale. cp and pmu compose the NM scale.

(c) Comparison of means to the scale’s median value on each of the subjective measures for each group. Green illustrates an
average positive score, white an average neutral score, and red an average negative score.

Figure 7.23: Comparison of the subjective measures’ scales and sub-dimensions.169



7.4.9 Regarding the Objective Measures

Figure 7.24 shows how the four objective measures performed across the different groups, with Table 7.7 containing

details on the statistical tests performed. The measure of WrongCold did not reveal any differences between

conditions. However both the measures of WrongHot and WrongTotal show a Strong E-D with the C-Control

condition containing a significantly higher amount of wrong answers than the other groups. The Time measure

shows a Soft E-D as the C-Control group performed significantly faster than the C-EBPS group (t=2.406, ρ=0.022)

and the aggregated C-Enhanced group (U=242.0, ρ=0.044).

Figure 7.24: Comparison of the results of the objective measures.

ERIK-Control EBPS-Control Enhanced-Control ERIK-EBPS
WrongTotal (U=90.0, ρ=0.008∗) (U=93.5, ρ=0.011∗) (U=183.5, ρ=0.003∗) (U=170.5, ρ=0.770)
WrongCold (U=128.5, ρ=0.129) (U=118.0, ρ=0.068) (U=246.5, ρ=0.053) (U=176.5, ρ=0.907)
WrongHot (U=84.5, ρ=0.005∗) (U=94.0, ρ=0.012∗) (U=178.5, ρ=0.002∗) (U=173.5, ρ=0.840)
Time (t=1.676, ρ=0.105) (t=2.406, ρ=0.022∗) (U=242.0, ρ=0.044∗) (t=0.257, ρ=0.798)

Table 7.7: Results of the comparison of means tests on each of the objective measures. Green with an asterisk*
marks comparisons which are significantly different.

7.4.10 Discussion

The results collected and analysed show us in general that our research question is supported. Looking into each of

our initial hypotheses:

• H1 - Players in C-Control will play worse than in C-ERIK and in C-EBPS: True. The objective results

show that participants in both C-ERIK and C-EBPS committed less mistakes than in the C-Control, given

that they were able to decode and exploit the hints given by the robot through its full-body posture, while

simultaneously performing face-tracking.

• H2 - Players in C-ERIK will play at least as well as in C-EBPS: True. The objective results show that there

was no significant difference between the total amount of wrong answers given by the players in C-ERIK

and in the C-EBPS. This means that the expressive postures provided by the ERIK algorithm were as useful,

relevant and legible as ones that were manually designed with a much higher work effort for the EBPS

technique.
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• H3 - The robot is perceived to convey the illusion of life in all conditions: Partially True. The subjective

results show that all conditions except for C-Control reported a positive AIL average score. The control

group reported a neutral score, which becomes inconclusive as to whether or not we may consider it to have

conveyed the illusion of life or not. However we can understand that because in the enhanced groups, the

robot was performing an additional intentional-directed expressive behaviour, that contributed to convey they

illusion of thought (which is core to the illusion of life).

• H4 - The robot is perceived to convey the illusion of life more in C-ERIK and C-EBPS than in C-Control:

True. The subjective results show that the both C-ERIK and C-EBPS scored significantly higher in the

AIL measure than the C-Control group. This was already expected, for the same reason as discussed in the

previous hypothesis H3.

• H5 - The players are able to perceive the robot’s intention and motivation as being towards helping them

in both C-ERIK and C-EBPS but not in C-Control: True. The subjective results show that the RIM was

significantly higher and positive both C-ERIK and C-EBPS than in C-Control. When analysing RIM’s

sub-dimensions, i.e., the Robot’s Intention (ri) and Robot’s Motivation (rm) separately, we find that the

Robot’s Intention, not only follows the same tendency, but also scored significantly positive in the enhanced

conditions, while scoring negatively in the C-Control condition. This was actually the only dimension that

scored negatively. Regarding the Robot’s Motivation, we find a similar pattern, except that in C-Control it

scored neutral (slightly better). Our guess is that in general the players had a positive feeling about the robot

(based on the results from RoSAS) and therefore, maybe considered that the robot did intrinsically want to

help them (although they reported negatively on its hint-providing intention). It is interesting to note that the

same tendency is found on the enhanced conditions, i.e., the rm scores are also higher in those conditions

than the ri ones, thus supporting that in general, and regardless of the actual perceived intention of the robot,

it was felt as being there to (supposedly) help them. Furthermore, the Networked Minds (NM) and Almere’s

Perceived Adaptability (PA) scales both follow the same patter, all scoring significantly higher scores in

the enhanced conditions compared to C-Control, thus reinforcing that regardless of the technique used, the

intention-directed behaviour of the robot, as designed and integrated into the gameplay, had a positive effect

on various measures regarding the perception of the robot’s intention, motivation and closeness towards the

player.

• H6 - The game is understandable and the robot is perceived to play well in all condition: Partially True. The

RPU measure shows a positive score in all groups. However when breaking down the scale, we find that the

robot’s Task Performance (tp) was perceive to be positive in all groups, while the Task’s Usability (tu) was

scored as neutral in all except the C-EBPS group, and that this difference is actually significant compared to

C-Control. We initially wanted to ensure that the participants would not become too affected by the lack of

the posture-expressive behaviour (in C-Control) that they would not understand the task at all. While the

tu measure reports a T-D on C-EBPS, it was not reported in the whole C-Enhanced, which means that we

fail to refute that the inclusion or absence of the robot’s intention-directed expressive behaviour does not

cause a significant effect on the participants’ understanding of the game and the task. Therefore the iterative

game-design method (with 3 pilot tests) allowed to tweak the usability of the game to an acceptable level,
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even in the absence of the robot’s full expressive behaviour, while also noting that the overall game-design

and/or interaction design could have still been made better.

We further develop on additional findings that were not initially expected or foreseen, or directly relevant to our

research question. We noted however that participants in C-Enhanced took more time to complete the task than

in C-Control. Inspection of the audio-video data captured from the study revealed that participants in the former

conditions, having understood that the robot was giving tips, would try notes at a lower pace in order to inspect the

robot’s response. In C-Control, after a while they would quickly play random notes, which, although counting up to

a significantly higher number of mistakes, drove them quicker through the task. This was an interesting finding for

which we initially had no expectations, but further supports the design quality of the activity and of the distinction

between C-Enhanced and C-Control.

The RoSAS scale shows only a significant difference in the Robot Competence (RC) measure between C-ERIK

and C-Control. However the difference did not hold for the whole of the C-Enhanced group. We suspect that the

ERIK algorithm may have yielded a higher feeling of competence, because the use of that algorithm is prone to

result in more dynamic/responsive motion, which players may have attributed to a higher sense of acknowledgement

of the other, and capability of attention, on the robot’s part. In overall however, no concrete difference may be

concluded between C-ERIK and C-EBPS, given that on comparing the various scales, there were either none, or

mixed differences (e.g. in contrast to the previous remarks, for the IOS scale, the C-EBPS scores significantly

higher than C-Control, but here C-ERIK does not). Although the RoSAS scale seems not to have added any

relevant information, that fact may be used to also hypothesize that across all groups, the robot was perceived as

being nearly the same character - which was desirable for our study.

To conclude, and recalling our research question:

Can ERIK be used to provide expressive behaviour to an autonomous face-tracking articulated robot, in

order to convey a utilitarian intention to the user and direct its action selection within a task, while also

conveying the illusion of life?

We have found evidence that this question is positively supported, given that:

• When ERIK was used, the participants noted its intention-directed postural behaviour, and were able to

intuitively understand it without having been given any information about its existence in order to perform

better on a task that required it.

• The effect of using ERIK was similar to that of a manually tailored (and laborious) alternative technique

EBPS, in that no significant differences were found for any of the measures between those two groups, while

significant ones were found especially on key measures when compared to the Control condition. This means

that ERIK can be used in substitution of such currently existing manually-tailored and arduously worked

techniques (such as ones based on learning-by-examples).

• The difference between the various conditions did not hinder the player’s understanding and playability of the

game, impacting only on their performance, which reveals that the selected task was properly designed to

answer our question.
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• Despite the shakiness of the robot due to the fact of it being a low-fidelity craft robot, results show that the

algorithm succeeded in making it convey both the intended expressivity, and the illusion of life, meaning that

it is likely to work on both similar or more solid robots.

In addition, we highlighted the importance of the illusion of thought to the overall illusion of life in robots, as

already had been initially proposed by Takayama et al. [31]. In our case we further demonstrated that such illusion

can also be expressed through fully interactive expressive postures that are computed in real-time, and are therefore

most appropriate for use-cases involving autonomous social robots.
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Chapter 8

Conclusion

No matter how broad a thesis may be, and how diversely it may approach a topic, it still seems like it’s never

enough to behold the full breath of outcomes and contributions that we have aspired to. Nevertheless, by the time

we complete this chapter, we finally see ourselves in a position of fully wrapping up this stage of our research.

Controversially, the conclusive chapter of a thesis does not really stand up to its name, as it generally performs one

glimpse into the past, and another glimpse into the future.

Through these years we have explored and achieved ground-breaking developments on the field of robot

animation, in particular on how it can be used in HRI applications featuring autonomous social robots.

We have established our grounding on the field of character animation, where artists have dwelled within the

last 100 years. There we we also found land upon which to build the foundations on robot animation principles, and

from where we further built a bridge that connects the animation field with robotics, spanning over and across the

broader field of CGI animation.

A major part of our contribution is of technical nature. That is because CGI animation and robotics typically

follow different procedures, workflows and paradigms, and therefore we were required to establish new techniques

and tools that could be supported on the principles and requirements of both fields. These tools and techniques

therefore pose today as examples from which to build other tools in the future, to address particular problems either

in the academia or in the industry, and to keep developing further on the design and execution of artist-directed

animation in autonomous social robots.

Within our contributions we make a final remark on the ones that we consider our signature, most groundbreaking

work, and upon which we hope the future to be built after:

The Principles of Robot Animation

Just as most character animators start by learning Disney’s Twelve Principles of Animation, we believe that people

working in the field of social robots in which expressivity is a key part of their work, should also have a similar list

to provide guidance and remarks on the use of animation principles with robotic embodiments. The Principles of

Robot Animation we first drawn in 2012, and further refined up to 2019, based on the increased experience that we

gathered through those years. While it may have seemed pretentious to launch a new field through a set of principles

(in 2012), we actually saw that initial version as the layout of a foundation to discuss with our peers in order to
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allow them to be further refined throughout the years. We do not ignore the fact that Thomas & Johnston did not

write the Disney principles in the early stage of their work, but after 60 years of experience. Therefore as of today,

we still do not consider the Principles of Robot Animation to be concluded - instead they are likely to be revised

over the years, during which new principles may even arise, or old ones may be removed, reframed or merged.

ERIK

ERIK is an expressive inverse kinematics technique that allows a manipulator-like robot to perform expressive

poses towards given directions, which enhances such a robot’s ability to interact socially with humans. It can run in

real-time and adapt to different embodiments and expressive poses without requiring any additional demonstration or

training. The challenge of developing ERIK was one that was most notably filled with uncertainty in the beginning,

and overgrown in reward at the end. In the field of inverse kinematics we clearly see a marked difference between

robotics and CGI. Within 3d animation software and video games there are nearly infinite possibilities for animating

3d characters in real-time - and they can be animated from a timeline, from motion capture, from an AI that controls

a walk-cycle and full-body IK, etc. Because robotics deals with the kinematics at a much more precise and consistent

level - the physical level - the techniques used are much more difficult to tweak without breaking the mathematical

principles under which they lie. Our approach of tackling a grey area - it must work on robots, but it doesn’t

have to be that perfect - allows us to think out of the box, and address the problem from a different perspective.

Additionally, it introduced us to new world of possibilities regarding what we prefer to call expressive kinematics.

That is because such techniques nowadays do not remain limited to pure, close-form inverse kinematics solutions,

but may become quite more hybrid especially when we introduce expressive goals into the problem. The current

implementation of ERIK is quite complex and is likely not to be the must efficient computationally. It also lacks

some of the expected features that initially drove us to FABRIK, such as the use of multiple end-effectors, and

consequently an application featuring a full-body ERIK-controlled robotic character. However future work will

allow us to refine the algorithm to make it easier to replicate and understand, while also extending it with those

features. Although more research is also required to understand what are the actual limits of ERIK in terms of

precison-control, we successfully concluded that it poses as a technique that may be used across various applications

and embodiments, except ones in which precision is critical, such as when the robot engages in tactile interaction

with humans, when performing pick’n’place tasks, or other precision-oriented tasks such as surgery or using tools.

However in a case such as surgery in particular, we would not even advocate for the use of ERIK given that in such

an extremely critical task expressivity needs not need to play a role.

Nutty Tracks and Pipeline

Nutty Tracks is the programmable animation engine we have developed to support the exploration and development

of our proposed robot animation principles and practices. The Pipeline at its core defines its capabilities and can

be further mimicked into future animation engines. Throughout much of our work, Nutty Tracks has become our

signature technology. Its concept, dating back to 2013, still supports our needs and current HRI scenarios without

having suffered any major revamping. It was created to allow us to experiment new robot animation techniques

that we could not easily explore otherwise. That purpose is also where it got its name from. We followed on a

common practice among the major animation studios in the early days of animation. All of the studios had their
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own experimental animation department, in which they would develop new techniques either in the animation

process or its production, which would be used to create series of short animated cartoon movies. Such series were

named using two terms: one word that is an adjective to joyfully crazy; another that represents some kind of musical

piece. Therefore they created names we all know such as Looney Tunes and Merrie Melodies (Warner Bros.), Silly

Symphonies (Disney) or Happy Harmonies (Metro-Goldwyn-Mayer). We followed by introducing Nutty Tracks, in

particular due to a personal fascination with animated squirrels (Nutty), and the fact that Track worked both as a

music track/sound track, while also relating to the paradigm of Nutty’s layer-based visual appearance. There are

plenty more ideas that we hope to keep exploring and developing through Nutty Tracks, namely in order to reduce

even more the code required to support new embodiments, to create a more flexible motion filter designer, and to

keep enhancing its inverse kinematics abilities. By now we consider it to have achieved its goals by having been

the main sandbox for our different techniques and practices in HRI, and the most successfully of our endeavours.

In the future we expect to continue developing Nutty Tracks or even to create new polished versions of it from

scratch. In any case its Nutty Pipeline, internal mechanics and GUI concept will remain as what we consider to be

the foundation for any further programmable robot animation engines.

Nutty Motion Filter

The Nutty Motion Filter is a signal processor that allows to ensure C1- to C3-continuity on the motion signal that is

output from an animation engine into a virtual or robotic character controller. Since the beginning, our approach

of taking methods from CGI and applying them to robots, has required a way to ensure that the resulting motion

is continuous and smooth. Through the years we have used ad-hoc solutions until we finally developed the Nutty

Motion Filter, which allows us to control several characteristics of the resulting signal, in a way that keeps the signal

smooth and controlled, while also providing parameters that allow to transfer expressivity into the resulting motion.

There is still a lot of work to be done here, which will be addressed in the future, namely, that no evaluation of

the expressive capabilities of the NMF was actually performed. The filter can be used as a signal processor in a

wide range of applications. It can be used e.g. in joint motion, on the interpolation of LED lights and of display

features, or on spacial motion. An extended evaluation across various applications will allow us to further establish

templates and use-principles for the NMF. In particular, we expect to use the filter to just animate the motion of

virtual abstract shapes in a 2D view, and by changing the parameters, access if in fact, the motion through the same

trajectory points, filtered using different parameters, conveys different expressivity or not.

Adelino

Adelino is a low-fidelity craft manipulator-like robot with a minimalist expressive face that was designed to resemble

a snake, or a pure line of action, and was built and used especially to challenge the limits of what we could achieve

in robot animation using Nutty Tracks and ERIK. Despite its rudimentary build quality, Adelino has highly exceeded

our initial expectations regarding what it could be used for in HRI applications. Even with its low-fidelity motors

and shakiness, its design is shown to be appropriate for non-verbal expressive behaviour. While building new

Adelino-type robots using the same materials still remains an option, we advocate that its design and mechanics can

pose as a paradigm for future robot designs, even with more solid materials and motors, in various dimensions, with

various number of links, and even slightly different head formats. The use of a manipulator-like robot as a full-body
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expressive character in which its end-effector is used as an expressive head, and also the idea that this head may be

symmetric in order to flip upside-down depending on the kinematic constraints, has shown to be a success and is

very welcome by the community. Further development at the IK level may be taken to provide even better results on

Adelino-type robots, similarly to how the ΞSymmetricEndpoint extension was developed for ERIK to enhance its support

of Adelino.

SERA

SERA is the toolkit and agent architecture that has supported all the HRI scenarios we have worked on and presented

throughout this thesis. Since we started developing software for authoring and execution of HRI scenarios in 2012,

many tools have been built, such as Thalamus, Skene, and later Nutty Tracks. At some point we realized that we

were following nearly the same structure and procedure on different application and even using different robots.

The toolkit developed at the INESC-ID’s GAIPS lab was therefore turned into what became know as the SERA

architecture and toolkit. The toolkit aggregated our tools so that other people could access and use them, while

the architecture defined the guidelines on how to set-up the components of the scenario. The SERA toolkit still

remains as the main HRI software used at GAIPS even with nearly no development made during the last two years.

It has become part of the lab’s legacy by providing new students and researchers with a set of tools that can readily

be used to prototype and develop full HRI scenarios consistently and robustly, and that allows both technical and

non-technical parts (such as psychologists) to work together on those scenarios. As such the overall SERA toolkit

(which includes Nutty Tracks) does remain as the major technological legacy that is yielded from the work that has

lead up to this thesis. Just like in the case of Nutty Tracks, few developments were made in the past years, although

many ideas for features are left to implement. Therefore we expect to keep SERA in an open development state and

even to make it fully available to the general public. Before we do so however, the requirement we have set is to

develop more documentation both on the code and on the use of the tools.
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Appendix A

ERIK Algorithm

A.1 Algorithmic Specification

One of this paper’s major contribution is to share the full algorithmic specification that allows to implement ERIK.

However it would be impractical and even unintelligible to present the whole algorithm here in detail. Instead

we have done our best to describe in detail only the major parts of it, while presenting either a textual description

or a mathematical formulation for the parts that are less particular to ERIK, and which may be understood and

implemented by someone with appropriate CGI animation knowledge.

Aiming at a more comprehensible reading experience, we have shifted all the detailed algorithms to the

next section of the appendix, A.2. The entry point to the algorithm is the CalculateERIK function, outlined in

Algorithm 3. This function takes as input the ERIK Parameters (Π), and Hyperparameters (Λ), which have been

described in detail in Section 6.3.5.

Some of the macros or functions used in the algorithms are briefly described in the next section. For simplicity,

all the quaternions used are rotation quaternions, i.e, quaternions of unit length. As an additional reminder, please

note that the child link of the end-point link refers to the posture’s SuperPoint (Section 6.3.8).

A.1.1 Description of functions used throughout the algorithms

This section outlines a short description and/or mathematical formulation for some of the auxiliary functions and

operations used within ERIK.

EmptySolution(Sk) Return an empty solution for skeleton Sk.

SafeAngle(k, θ, bCycle = False) Returns θ′ as an angle that is safe for joint k given its maximum and minimum

angle limits, while allowing the angle to cycle instead of purely clamping:

θ′ =

 min(kMaxθ,max(kMinθ, 2π · ( θ
2π − b

θ
2π e))) ifbCycle

min(kMaxθ,max(kMinθ, θ)) otherwise
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SetOriFromParent(k,Θ) Sets k’s basis orientation from its parent:

ΘkQ =

 ΘkParentQ
·ΘkParentL

ifnot kIsRoot

I otherwise

SetPosFromParent(k,Θ) Sets k’s basis position from its parent:

Θkρ =

 ΘkParentρ
+ RotVQ(kParent~σ,ΘkQ) ifnot kIsRoot

~0 otherwise

SetFrameFromParent(k,Θ) Call SetOriFromParent(k,Θ) and SetPosFromParent(k,Θ) and returns the

new Θ.

ApplyFK(Θ, k = ΘRoot) Performs Forward Kinematics calculus on solution Θ starting from node k (optional).

RotVQ(~v,Q) Returns vector V rotated by quaternion Q.

QAA(~v, α) Returns a normalized quaternion that represents a rotation of α about the axis ~v (axis-angle).

VDiffAsQ(~v1, ~v2) Returns the orientation difference between ~v1 and ~v2 as a Quaternion.

QDiff(Q1, Q2) Returns rotation difference between Q1 and Q2 as a Quaternion.

TBasis(k,Q′) Transforms the world-space basis of link k globally by Q′ (kQ = Q′ · kQ).

TBasisRoll(k,Q′) Transforms the world-space basis of link k locally by Q′ (kQ = kQ ·Q′).

VecAngle(~v1, ~v2) Angle θ between ~v1 and ~v2 using atan2.

VecAngle(~v1, ~v2, ~r) Angle θ between ~v1 and ~v2 using atan2 with sign(θ) = −1 if r · (~v1 × ~v2) < 0 else 1.

LALUT(k, λ) Queries joint k’s LALUT for latitude λ.

TargetLatitude(k, ~τ ) Calculates the latitude λ for target ~τ on k’s joint model:

ς = −1 if τ̂ · kPOA < 0 else 1

λ = max(kBottomλ,min(kTopλ,
τ̂ · Ŷ + 1

2
))

PitchRA(k) Returns ~r such that:

~r =


kChildRA if IsTwister(k) and kIsRoot

kParentRA if IsTwister(k) and not kIsRoot

kRA otherwise

EPA(Q,~u) Ensures Positive Axis on quaternion Q based on a rotation axis ~u:

EPA(Q) = −Q if ~u · ~Qv < 0 else Q
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IsTwister(L) Returns True if link L’s rotation axis is aligned with its own segment.

AvoidJointEdge(k, δ) Performs an angular offset of±δ on joint k if it is currently at its minimum (+δ) or maximum

(−δ) value.

AvoidPostureJointEdges(Ψ, δ) Runs AvoidJointEdge(k, δ) on each joint k in posture Ψ.

BWCD(Ψ|Θ, ~τ ,Λ) Performs BWCD (Section 6.3.2) on posture Ψ or solution Θ, towards the target direction ~τ .

CCD(Θ, ~τ ,Λ) Finds a new solution that turns the current solution Θ’s end-point towards direction ~τ using CCD.

NonConversionDetected(aux,Λ) Checks whether or not the current auxΘε is converging towards a fixed value

or behaving as a cyclic function, and therefore not converging.

NonConvOffsetTrick(aux, k) Shifts the current Target Orientation to a slightly different direction choosing link k

and child as the expected offset solvers, by applying:

Ω(Θ, k, δ) =



QAA(RotV Q(kRA,ΘkQ), δ) if

|Θkθ − kMinθ| >

|Θkθ − kMaxθ|

QAA(RotV Q(kRA,ΘkQ),−δ) otherwise

δ = ΛDisturbanceθ

k = ΛSkRoot

auxτ = Ω(auxΘ, kChild, δ) · Ω(auxΘ, k, δ) · auxτ

auxTriedNonconvOffset) = True

SelectBestSolution(aux) Returns Θ such that:

Θ =

 auxΘ if auxΘε ≤ auxbestΘε

auxbestΘ otherwise
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A.2 Detailed Algorithms

We start by presenting a map of the algorithms in Figure A.1, which serves as a visual index to know where to

find each of the pieces, and where they are invoked. Please refer back to Tables 6.2–6.4 in Section 6.3.5 and to the

description of functions in Section A.1.1 while following or implementing these algorithmic descriptions.

Figure A.1: A map of the algorithmic description of ERIK, to be used as a visual index throughout this section.
Each arrow means that the algorithm from where it departs invokes the algorithm at which it arrives.

Algorithm 2: InitializeSolution

input :τ,Ψ,Λ // Orientation, Posture, Hyperparams

output :aux // container of execution variables

1 begin
2 aux← ∅
3 auxτ ← τ // save a working copy of orientation

4 if IsTwister(ΛSkEE) then
5 auxτ ← τ · RotVQ(Ŷ ,ΨEndPointθ )
6 auxΨ ← Ψ // save a working copy of posture

7 auxpreviousΘ ← EmptySolution(ΛSk)
8 CalculateSolutionError(auxpreviousΘ, τ,Ψ,Λφ)
9 auxbestΘ ← auxpreviousΘ

10 auxΘ ← auxpreviousΘ
11 return aux
12 end
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Algorithm 3: CalculateERIK

input :Π,Λ // Parameters, Hyperparameters

output :Θ // Solution

1 begin
2 aux← InitializeSolution(Πτ ,ΠΨ,Λ)
3 auxΨ ← BWCD_Posture(auxΨ, aux~τ ,Λ)
4 if ΛΞAvoidJointEdges then
5 AvoidPostureJointEdges(auxΨ,ΛDisturbanceθ)
6 for i← 1 to ΛMaxERIKIterations do
7 for k ← ΛSkEE to ΛSkRoot do
8 τ ← auxτ if kIsEndPoint else auxΘkQChild

9 ForwardPhase(k, τ, auxΨ, auxΘ,Λ)

10 end
11 for k ← ΛSkRoot to ΛSkEE do
12 BackwardPhase(aux, k,Π,Λ)
13 end
14 if SolutionOK(Π,Λ, aux) then
15 return auxΘ

16 auxΘ ← BWCD_Solution(auxΘ, aux~τ ,Λ)
17 if SolutionOK(Π,Λ, aux) then
18 return auxΘ

19 if NonConversionDetected(aux,Λ) then
20 if ΛΞNonConvOffsetTrick and ¬auxTriedNonconvOffset then
21 aux← NonConvOffsetTrick(aux ,Λ)
22 continue
23 else if ΛΞNonConvCCDTrick then
24 auxΘ ←CCD(auxΘ, auxτ ,Λ)
25 if SolutionOK(Π,Λ, aux) then
26 return auxΘ

27 else
28 aux← CCD(EmptySolution(ΛSk), auxτ ,Λ) // Try from a new empty

solution.

29 if SolutionOK(Π,Λ, aux) then
30 return auxΘ

31 return SelectBestSolution(aux)

32 end
33 return SelectBestSolution(aux)

34 end

Algorithm 4: CalculateSolutionError

input :Θ, τ,Ψ,Λ // Solution, Target Orientation, Target Posture, Hyperparameters

output :The solution’s combined error Θε

1 begin
2 ε← ΛOrientationErrorWeight· OrientationError(ΘEE, τ,Λ) + ΛPostureErrorWeight·

PostureError(Θ,Ψ,Λ)
3 return ε
4 end
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Algorithm 5: OrientationError

input :Φ, τ,Λ // End-Effector Solution, Target Orientation, Hyperparameters

output :The solution’s orientation error εOrientation
1 begin
2 ωε ←

min(|τ−ΦEEΩ
|,|τ+ΦEEΩ

|)√
2

// Absolute distance between quaternions

3 if ΛΞSymmetricEndpoint then
4 ξ ← QAA(RotVQ(Ŷ ,ΦEEΩ

), π) · ΦEEΩ
// Rotate symmetrically about its rotation axis

5 ξε ← min(|τ−ξ|,|τ+ξ|)√
2

// Absolute distance between quaternions

6 ωε ← min(ωε, ξε)

7 return ωε
8 end

Algorithm 6: PostureError

input :Θ,Ψ,Λ // Solution, Target Posture, Hyperparameters

output :The solution’s posture error measure εPosture
1 begin
2 ε← 0, i← 0

3 ~s← ~t← ΛSkRootσ

4 a← ΛErrorAggravation
5 for k ← ΛSkRoot to ΛSkEE do
6 if ¬IsTwister(k) then
7 ~u← ΘkChildρ

−Θkρ

8 ~v ← ΨkChild~ρ
−Ψk~ρ

9 dsu ← 1− (1+~s·~u)
2

10 dtv ← 1− (1+~t·~v)
2

11 ε← ε+ ai ∗ |dtv − dsu|
12 i← i+ 1, ~s← ~u, ~t← ~v

13 end
14 return ε

ΛPostureNorm

15 end

Algorithm 7: SolutionOK

input :Π,Λ, aux // Parameters, Hyperparameters

output :Is auxΘ acceptable (Boolean)
1 begin
2 CalculateSolutionError(auxΘ,Πτ ,ΠΨ,Λφ)
3 if auxΘε ≤ auxbestΘε then
4 auxbestΘ ← auxΘ

5 return auxΘε ≤ ΛThresholdε

6 end
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Algorithm 8: ForwardPhase

input :k, τ,Ψ,Θ,Λ /* Joint, Target Orientation, Target Posture, (aux) Solution, HypParams

*/

output :Intermediate solution Θ after forward phase
1 begin
2 if kIsEndPoint then Θkρ ← Ψk~ρ

3 if not kIsRoot then
4 ~s← RotVQ(k~σ,ΘkQ)
5 TBasis(k,VDiffAsQ(~s,Ψk~ρ −ΨkParent~ρ

))

6 ~rp ← RotVQ(PitchRA(k),ΨkQ)
7 ~rs ← RotVQ(PitchRA(k),ΘkQ)

8 θ ← VecAngle(proj~rs, ~Θkd
, proj ~rp, ~Θkd

, ~Θkd)

9 TBasisRoll(k,QAA(Ŷ , θ))

10 if not IsTwister(k) then
11 ~s← ΨkChild~ρ

−Ψk~ρ

12 ~rp ← ~0, n← k, flipped← False
13 while ‖~rp‖ ≈ 0 and n 6= ∅ do
14 m← n
15 ~p← n~σ if nIsRoot else (Ψn~ρ −ΨnParent~ρ

)

16 ~rp ← p̂× ŝ
17 if nIsRoot and notflipped then
18 ~s← ΨkChildChild~ρ

−ΨkChild~ρ

19 flipped← True, n← nChild

20 else ~s← ~p, n← nParent

21 ~s←RotVQ(PitchRA(m), I if mIsRootelse ΘmParentQ
)

22 ~p← RotVQ(PitchRA(m),ΘkQ)
23 if (~p · ~rp < 0) 6= (~rp · ~s < 0) then ~rp ← −~rp
24 θ ← VecAngle(proj~s, ~Θmd

, proj ~rp, ~Θmd
, ~Θmd)

25 PropagateRollDown(QAA(Ŷ , θ), k,Θ)

26 if not kIsEndPoint then
27 ~a← ~kRA if IsTwister(kChild) else ~kChildRA
28 ~r ← RotVQ(~a,ΘkQ)
29 ~rc ← RotVQ(~a,ΘkChildQ

)

30 if IsTwister(kChild) and ~rc · ~r < 0 then
31 PropagateRollUp(QAA(Ŷ , π), k,Θ, T rue)

32 else if ‖proj~rc
~Θkd‖ ≈ 0 or ‖proj~r ~Θkd‖ ≈ 0 then

33 θ ← VecAngle(proj~rc
~Θkd , proj~r ~Θkd ,

~Θkd)

34 PropagateRollUp(QAA(Ŷ , θ), k,Θ, θ ≈ π)
35 Qy, Qp, Qr ← Y PR(QDiff(ΘkQ , τ), kRA)
36 if kIsEndPoint and Qrθ >

π
2 then

37 Qr ← QAA( ~Qrv , π −Qrθ )
38 else if kIsEndPoint and Qrθ < −π2 then
39 Qr ← QAA( ~Qrv ,−π −Qrθ )
40 if IsTwister(k) then
41 Θkθ ← SafeTwist(k,Qyθ +Qrθ)
42 else
43 Θkθ ← LocalSwing(k,RotVQ(~τ ,ΘkQ∗ ))

44 if Qr 6= I then PropagateRollDown(Qr, k,Θ)

45 return FinishForward(k,Θ,Λ)

46 end
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Algorithm 9: PropagateRollDown

input :Q, k,Θ // Roll, Start link, Solution

output :Solution Θ with Roll propagated down the kinematic chain.
1 begin
2 repeat
3 k ← kParent
4 ΘkQ ← ΘkQ ·Q
5 until kIsRoot

6 return Θ

7 end

Algorithm 10: PropagateRollUp
input :Q, k,Θ, bF lip = False
output :Solution Θ with Roll propagated up the kinematic chain, with pitch angles flipped if

bF lip = True.
1 begin
2 while ¬kIsEndPoint do
3 ΘkChildQ

← ΘkChildQ
·Q

4 if bF lipP itch and not IsTwister(kChild) then
5 ΘkChildθ

← −ΘkChildθ

6 k ← kChild

7 end
8 return Θ

9 end

Algorithm 11: YPR

input :Q, ~R // Quat orientation, Rotation axis

output :Qy, Qp, Qr such that Q = Qy ·Qp ·Qr
1 begin
2 ~u← Ŷ , ~x← ~R
3 ~yQ ← ~u ·QM
4 ~xQ ← ~x ·QM
5 ~N ← ~u× ~yQ

6 if ‖ ~N‖ = 0 then
7 if ~u · ~yq ≈ 1 or ‖ ~yQ‖ = 0 then
8 Qy ← Qp ← I
9 Qr ← QAA(~u,Qθ if ~u · ~Qv ≈ 1 else −Qθ)

10 else
11 Qy ← I
12 Qp ← QAA(~x,−π)
13 Qr ← QAA(~u,VecAngle(~x, ~xQ, ~yQ))

14 else
15 if ~N · ~x < 0 then ~N ← −vecN
16 Qy ← QAA(~u,VecAngle(~x, N̂ , ~u))

17 Qp ← QAA(~x,VecAngle(~u, ~yQ, N̂))

18 Qr ← QAA(~u,VecAngle(N̂ , ~xQ, ~yQ))

19 return EPA(Qy, ~u),EPA(Qp, ~x),EPA(Qr, ~u)

20 end
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Algorithm 12: SafeTwist

input :k, θ // Joint, Angle

output :Safe θ as cyclic local twist for ERIK’s Joint Model
1 begin
2 θ′ ← SafeAngle(k, θ, bCycle← True,)
3 β ← (θ − θ′) mod π
4 if |β| > 0 and ¬kIsEndPoint then
5 if θ ≤ kMinθ then θ′ ← −kMinθ + β
6 else if θ ≥ kMaxθ then θ′ ← −kMaxθ + β

7 return θ′

8 end

Algorithm 13: LocalSwing

input :k, ~τ // Joint, Target direction (local)

output :θ local swing angle using ERIK’s LALUT
1 begin
2 λ← TargetLatitude(k, ~τ)
3 return SafeAngle(k,LALUT(k, λ))

4 end

Algorithm 14: FinishForward
input :k,Θ,Λ // Link, Partial Solution, Hyperparams

output :Solution Θ after Forward Phase
1 begin
2 if ΛΞAvoidEdges then
3 Θkθ ← AvoidJointEdge(k,ΛDisturbanceθ)
4 if ¬kIsEndPoint then
5 ΘkQ ← EPA(QDiff(ΘkΩ

,ΘkChildQ
·ΘkQ), kRA,)

6 Θkρ ← ΘkChildρ
− RotVQ(k~σ,ΘkChildQ

)

7 Θ← ApplyFK(Θ, k,)
8 end
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Algorithm 15: BackwardPhase

input :k, τ,Θ,Λ /* Joint, Target Orientation, (aux) Solution, Hyperparameters */

output :(Final) Solution Θ after backward phase
1 begin
2 Θ←SetFrameFromParent(k,Θ,
3 ) if IsTwister(k) then
4 if ¬kIsEndPoint then
5 Θ←BackwardChildRoll(k,Θ,Λ)
6 θ ←BWTwist(τM ,ΘkΩM

)+Θkθ

7 if kIsEndPointand ΛΞSymmetricEndpoint then
8 θ′ ←BWTwist(τM · QAA(Ŷ , π),ΘkΩM

)+Θkθ

9 if |θ′| < |θ| then θ ← θ′

10 Θkθ ← θ

11 else
12 Q← ΘkQ∗ · τ
13 λ← TargetLatitude(k, ~Qy)
14 θ ← SafeAngle(k,LALUT(k, λ))
15 if ¬kIsEndPoint then
16 θ′ ← SafeAngle(k,LALUT(k,−λ))
17 ~σ ← RotVQ(k~σ,ΘkQ · QAA(kRA, θ))

18 ~σ′ ← RotVQ(k~σ,ΘkQ · QAA(kRA, θ
′))

19 ~d← RotVQ(k~σ,ΘkChildΩ
)

20 if ~σ′ · ~d > ~σ · ~d then
21 Swap(θ, θ′)
22 Swap(σ, σ′)

23 ~d← RotVQ(k~σ, τ)

24 if ~σ′ · ~d > ~σ · ~d then
25 θ ← θ′

26 Θkθ ← θ
27 if ¬kIsRoot and IsTwister(kParent) then
28 ~rt ← RotVQ(kRA, τ)
29 ~rk ← RotVQ(kRA,ΘkQ)
30 ~rp ← RotVQ(kParentRA,ΘkParentQ

)

31 if |~rt · ~rp| = 1 or |~rk · ~rp| = 1 then
32 ~rt ← RotVQ(kOA, τ)
33 ~rk ← RotVQ(kOA,ΘkQ)

34 ~p← proj~rt ~rp
35 if ¬kIsEndPoint then
36 q ← QAA(ΘkChildd

,VecAngle(~rt, ~p,ΘkChildd
))

37 ~p← projRotVQ(kRA,q·τ) ~rp
38 γ ← VecAngle(proj ~rk ~rp, ~p, ~rp)
39 ΘkParentθ

← γ + ΘkParentθ

40 Θ←SetFrameFromParent(k,Θ,
41 )
42 return FinishBackward(k,Θ)

43 end
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Algorithm 16: BackwardChildRoll
input :k,Θ,Λ
output :Θ with ΘkChildRA

aligned with plane ⊥ to ΘkChildd

1 begin
2 if ¬RotVQ(kChildRA,ΘkChildQ

) ·ΘkQy
= 0 then

3 ~cD ← ΘkChildd
cB ← ΘkChildQM

4 axis←’y’
5 if cBy · ~cD ≈ 1 or cBy · ~cD ≈ −1 or
6 Θkd · ~cD ≈ 1 or Θkd · ~cD ≈ −1 then
7 if cBz · ~cD ≈ 1 or cBz · ~cD ≈ −1 or cBx ·Θkd ≈ 0 then axis←’x’
8 else axis←’z’
9 ~cv ← cBaxis , ~pv ← ΘkQaxis

10 ~cp ← proj ~cv ~cD, ~pp ← proj ~pv ~cD
11 q ← QAA( ~cD,VecAngle(~cp, ~pp, ~cD)) ·ΘkChildQ

12 q′ ← QAA( ~cD,VecAngle(~cp, ~pp,− ~cD)) ·ΘkChildQ

13 if qaxis · ~pv < q′axis · ~pv then
14 ΘkChildQ

← q′

15 else
16 ΘkChildQ

← q

17 end
18 return Θ

19 end

Algorithm 17: BWTwist

input :τ,Ω //Target, Current Orientation

output :Angle the joint should twist to achieve the given target τ based on its current orientation Ω
1 begin
2 dzy ← τz · Ωy dxy ← τx · Ωy
3 if dzy ≈ 1 or dzy ≈ −1 or |dxy| < |dzy| then
4 return VecAngle(Ωx,projτxΩy ,Ωy)
5 else
6 return return VecAngle(Ωz ,projτzΩy ,Ωy)
7 end

Algorithm 18: FinishBackward

input :k,Θ // Link, Partial Solution

output :Solution Θ after BackwardPhase
1 begin
2 if ¬kIsRoot and IsTwister(kParent) then
3 Θ←FinishBackward(kParent,Θ)

4 Θ← SetOriFromParent(k,Θ)

5 end
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Algorithm 19: BWCD_Posture

input :Ψ, ~τ ,Λ // Posture to solve, Target Direction, Hyperparameters

output :Ψ result of the BWCD algorithm as a new posture.
1 begin
2 for i← 1 to ΛMaxCCDIterations do
3 for k ← ΛSkRoot to ΛSkEE do
4 ~pd← RotVQ(ΛSkEE σ̂,ΨSuperpointQ)

5 if CCDTest(~τ , ~pd,Λ) then
6 return Ψ
7 end
8 ~r ← RotVQ(kRA,ΨkQ)

9 ~pdp← proj ~pd~r

10 ~tdp← proj~τ~r
11 if ‖ ~pdp‖ 6= 0 and ‖ ~tdp‖ 6= 0 then
12 α← VecAngle( ~pdp, ~tdp, ~r)
13 if b|α|e > 0 then
14 q ← EPA(QAA(~r, α), kRA)
15 ~p← Ψk~ρ

16 Ψkθ ← Ψkθ + α
17 for j ← k to ΛSkEE do
18 Ψj~ρ ← ~p

19 c← jChild if not jIsEndPoint else ΨSuperPoint
20 ΨcQ ← q ·ΨcQ

21 if jIsEndPoint then
22 ΨSuperpoint~ρ ← ~p+ RotVQ(j~σ,ΨcQ)

23 else
24 ~p← ~p+ RotVQ(j~σ,ΨcQ)

25 end
26 end
27 end
28 end
29 ~pd← RotVQ(ΛSkEE σ̂,ΨSuperpointQ)

30 if CCDTest(~τ , ~pd,Λ) then
31 return Ψ
32 end
33 end
34 return Ψ

35 end

Algorithm 20: CCDTest

input :~t, ~ee,Λ, returnError=False // Joint, Target, EndEffector, Hyperparameters, (optional)

output :Current ~ee is an acceptable solution for a CCD-based algorithm.
1 begin
2 ε← b−~t·~ee−1

2 e
3 if returnError then return ε ≤ ΛCCDPrecision, ε
4 return ε ≤ ΛCCDPrecision

5 end
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Algorithm 21: BWCD_Solution

input :Θ, τ,Λ // Solution to solve, Target Direction, Hyperparameters

output :Θ′ result of the BWCD algorithm as a new solution.
1 begin
2 for i← 1 to ΛMaxCCDIterations do
3 ~eod← ΘEEd
4 for k ← ΛSkRoot to ΛSkEE do
5 if CCDTest(~τ , ~eod,Λ) then
6 ΘEEθ ← ΘEEθ+BWTwist(τM ,ΘEEΩM

)

7 return Θ

8 end
9 ~r ← RotVQ(kRA,ΘkΩ

)

10 ~top← proj~τ~r
11 ~eop← projeod~r

12 if ‖ ~~top‖ 6= 0 and ‖ ~~eop‖ 6= 0 then
13 Θkθ ← Θkθ + VecAngle( ~eop, ~top, ~r)
14 ApplyFK(Θ, k)

15 ~eod← ΘEEd
16 end
17 end
18 if CCDTest(~τ , ~eod,Λ) then
19 ΘEEθ ← ΘEEθ+BWTwist(τM ,ΘEEΩM

)

20 return Θ

21 end
22 end
23 ΘEEθ ← ΘEEθ+BWTwist(τM ,ΘEEΩM

)

24 return Θ

25 end
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Algorithm 22: CCD

input :Θ, τ,Λ // Solution to solve, Target Orientation, Hyperparameters

output :Θ result of the CCD algorithm as a new solution.
1 begin
2 ε← 10000, lastε ← 0

3 ~td← ~τ

4 ~ed← ΘEE~d
5 for i← 1 to ΛMaxCCDIterations do
6 lastε ← ε
7 for k ← ΛSkEE to ΛSkRoot do
8 ok, ε← CCDTest(~td, ~ed,Λ, returnError = True)
9 if ok then

10 ΘEEθ ← ΘEEθ+BWTwist(τM ,ΘEEΩM
)

11 return Θ

12 end
13 r ← RotVQ(kRA,ΘkQ)

14 ~tdp← proj~tdr
15 ~edp← proj ~edr
16 if ‖ ~tdp‖ 6= 0 and ‖ ~edp‖ 6= 0 then
17 Θkθ ← Θkθ + VecAngle( ~edp, ~tdp, r)
18 if ΛΞAvoidJointEdges then
19 AvoidPostureJointEdges(Θ,ΛDisturbanceθ)
20 ApplyFK(k,)
21 ~ed← ΘEE~d
22 end
23 end
24 ok, ε← CCDTest(~td, ~ed,Λ, returnError = True)
25 if ok then
26 ΘEEθ ← ΘEEθ+BWTwist(τM ,ΘEEΩM

)

27 return Θ

28 end
29 if |ε− lastε| ≤ ΛPrecision then
30 ΘEEθ ← ΘEEθ+BWTwist(τM ,ΘEEΩM

)

31 return Θ

32 end
33 end
34 ΘEEθ ← ΘEEθ+BWTwist(τM ,ΘEEΩM

)

35 return Θ

36 end
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Appendix B

User-Study Questionnaires

In the following sections we present the integral questionnaires as they were administered in both the Ahoy and the

AvantSatie studies. Both questionnaires are presented in the original Portuguese language.
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B.1 Ahoy Study Questionnaire

Nas páginas seguintes encontrarás alguns
questionários, todos eles diferentes.

Lê as instruções de cada questionário com atenção e
chama o investigador se tiveres alguma questão.

Todos os questionários são anónimos e confidenciais.

Sê honesto nas tuas respostas, não existem respostas
certas ou erradas para as questões.

B.16



Instruções:

• As seguintes questões referem-se aos momentos do jogo em que o robot fez a mímica das palavras que
tiveste de adivinhar.

• Faz um círculo à volta de um número de 1-6 que melhor representa a tua opinião.

• IMPORTANTE: Não faças um círculo à volta de “Discordo completamente” ou “Concordo completamente”,
mas apenas de um dos números.

O robot foi bom a fazer a mímica das palavras.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Consegui pensar em palavras que poderiam estar a ser representadas pela mímica do robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Os movimentos do robot durante as mímicas foram naturais.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robot pareceu possuir vida própria.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robot fez as mímicas de maneira a ser fácil para mim ver e entender o que ele estava a fazer.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robot parecia entender o conceito das palavras que estava a mimicar.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robot pensou em cada uma das palavras antes de fazer a mímica.

Discordo completamente 1 2 3 4 5 6 Concordo completamente
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O robot lembrava os personagens animados que conheço do cinema.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Instruções:

• As seguintes questões referem-se aos momentos do jogo em que estavas a tentar adivinhar
a palavra correcta, ANTES de o robot te indicar se conseguiste ou não.

• Faz um círculo à volta de um número de 1-6 que melhor representa a tua opinião.

• IMPORTANTE: Não faças um círculo à volta de “Discordo completamente” ou “Concordo
completamente”, mas apenas de um dos números.

O robot deu-me dicas à medida que eu tentava adivinhar a palavra correcta.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Consegui perceber, através das dicas do robot, se estava perto ou longe da resposta certa.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

As dicas do robot pareciam ser coerentes com as minha tentativas.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

As dicas que o robot me ia dando ajudaram-me a adivinhar a palavra correcta.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O movimento do robot enquanto eu tentava adivinhar era suave e natural.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robot movimentou-se em sintonia comigo enquanto eu tentava adivinhar a palavra certa.

Discordo completamente 1 2 3 4 5 6 Concordo completamente
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O robot estava entusiasmado com as minhas tentativas de adivinhar a palavra correcta.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robot queria que eu conseguisse adivinhar a palavra certa.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Instruções:

• As seguintes questões referem-se à interacção, no geral, que tiveste com o robot,
durante o jogo.

• Faz um círculo à volta de um número de 1-6 que melhor representa a tua opinião.

• IMPORTANTE: Não faças um círculo à volta de “Discordo completamente” ou “Concordo
completamente”, mas apenas de um dos números.

Dei pela presença do robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Os pensamentos do robot foram claros para mim.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Foi difícil para o robot compreender-me.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robot atraiu a minha atenção.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Os meus pensamentos foram claros para o robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente
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O robot deu pela minha presença.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Foi fácil para o robot compreender-me.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

A presença do robot foi óbvia para mim.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Eu atraí a atenção do robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Foi fácil compreender o robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

A minha presença foi óbvia para o robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Foi difícil compreender o robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Achei que o robot foi capaz de se adaptar ao que eu precisei.

Discordo completamente 1 2 3 4 5 6 Concordo completamente
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Achei que o robot fez apenas o que eu precisei, em cada momento.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robot ajudou-me quando eu achei necessário.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Instruções:

• Selecciona o número que achas que representa melhor o robot para cada uma das linhas abaixo.

Morto 1 2 3 4 5 6 Vivo

Estagnado 1 2 3 4 5 6 Vivacidade

Mecânico 1 2 3 4 5 6 Orgânico

Artificial 1 2 3 4 5 6 Naturale

Inerte 1 2 3 4 5 6 Interatico

Apático 1 2 3 4 5 6 Responsivo

Incompetente 1 2 3 4 5 6 Competente

Ignorante 1 2 3 4 5 6 Conhecedor

Irresponsável 1 2 3 4 5 6 Responsável

Pouco Inteligente 1 2 3 4 5 6 Inteligente

Insensato 1 2 3 4 5 6 Sensato

Antipático 1 2 3 4 5 6 Simpático

Hostil 1 2 3 4 5 6 Amigável

Cruél 1 2 3 4 5 6 Amável

Desagravável 1 2 3 4 5 6 Agradável

Horroroso 1 2 3 4 5 6 Atrativo
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Instruções:

• Tendo em conta a interacção com o robot, indica quão perto te sentiste em relação ao robot
durante o jogo.

• Faz uma cruz na resposta que melhor se adequa ao que sentiste.
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Por último, completa com os teus dados demográficos
(não adiciones o teu nome):

Idade:

Profissão:

Curso (se aplicável):

Ano de curso:

Familiaridade com robots (selecciona uma das opções abaixo)

Nunca tinha interagido com um robot ___

Já tinha interagido com um robot antes desta experiência ___ Quantas vezes? ___

Costumas jogar à mímica?

Sim ___ Não ___

Se sim,

Com que frequência?

Quando foi a última vez que jogaste?

(aproximadamente o mês e o ano)

Obrigado por teres feito parte deste estudo.
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B.2 AvantSatie Study Questionnaire

Nas páginas seguintes encontrarás alguns
questionários, todos eles diferentes.

Lê as instruções de cada questionário com atenção e
chama o investigador se tiveres alguma questão.

Todos os questionários são anónimos e confidenciais.

Sê honesto nas tuas respostas, não existem respostas
certas ou erradas para as questões.
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Instruções:

• As seguintes questões referem-se aos momentos do jogo em que tentavas adivinhar as notas correctas, e não
enquanto tu ou o robot estavam a repetir as músicas.

• Faz um círculo à volta de um número de 1-6 que melhor representa a tua opinião.

• IMPORTANTE: Não faças um círculo à volta de “Discordo completamente” ou “Concordo completamente”,
mas apenas de um dos números.

O robot sabia onde estava cada uma das notas de cada música.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Não teria conseguido entender o jogo sem o robô.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Consegui descobrir as notas correctas graças ao robô.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robô queria que eu acertasse nas notas.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Tive de olhar para o ecrã para saber o que tinha acontecido a cada momento.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Não teria conseguido descobrir as músicas sem a ajuda do robô.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robô entendeu sempre bem a nota que eu tinha tocado.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robô seguia-me com o olhar enquanto eu tentava adivinhar as notas certas.

Discordo completamente 1 2 3 4 5 6 Concordo completamente
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O robô sabia onde estava cada uma das notas de cada música.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

As dicas que o robô me ia dando ajudaram-me a adivinhar as notas correctas.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O movimento do robô era suave e natural.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robô pareceu possuir vida própria.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Não entendia o jogo sem olhar para o ecrã.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

As dicas do robô eram coerentes com as minha tentativas de encontrar cada nota certa.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Consegui entender, através do robô, quando tinha adivinhado cada nota correcta.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robô lembrava os personagens animados que conheço do cinema.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robô queria que eu conseguisse descobrir as músicas na totalidade.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robô pensou em ajudar-me.

Discordo completamente 1 2 3 4 5 6 Concordo completamente
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O robô conhecia bem cada uma das músicas.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O ecrã de jogo continha a informação que eu precisava para entender o jogo.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robô estava entusiasmado com as minhas tentativas de adivinhar as notas correctas.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robô tinha as músicas todas na cabeça.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robô deu-me dicas à medida que eu tentava adivinhar cada nota certa.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Consegui perceber, através das dicas do robô, se estava perto ou longe de cada nota correcta.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robô olhou para as teclas certas enquanto repetia cada nota.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Tive de seguir o ecrã de jogo para entender o que fazer.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O movimento do robô acompanhou o meu ritmo.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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Instruções:

• As seguintes questões referem-se à interacção, no geral, que tiveste com o robot, durante o jogo.

• Faz um círculo à volta de um número de 1-6 que melhor representa a tua opinião.

• IMPORTANTE: Não faças um círculo à volta de “Discordo completamente” ou “Concordo completamente”,
mas apenas de um dos números.

Dei pela presença do robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Os pensamentos do robot foram claros para mim.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Foi difícil para o robot compreender-me.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robot atraiu a minha atenção.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Os meus pensamentos foram claros para o robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robot deu pela minha presença.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Foi fácil para o robot compreender-me.

Discordo completamente 1 2 3 4 5 6 Concordo completamente
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A presença do robot foi óbvia para mim.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Eu atraí a atenção do robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Foi fácil compreender o robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

A minha presença foi óbvia para o robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Foi difícil compreender o robot.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Achei que o robot foi capaz de se adaptar ao que eu precisei.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

Achei que o robot fez apenas o que eu precisei, em cada momento.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

O robot ajudou-me quando eu achei necessário.

Discordo completamente 1 2 3 4 5 6 Concordo completamente

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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Instruções:

• Utilizando a escala abaixo, quanto associas cada palavra ao robot com que acabaste de interagir?

• Para cada palavra, faz um círculo à volta de um número de 1-9 que melhor representa a tua
opinião, em que 1 representa Nada a ver, e 9 representa Tudo a ver.

Nada a ver 1 2 3 4 5 6 7 8 9 Tudo a ver

Compassivo 1 2 3 4 5 6 7 8 9

Embaraçoso 1 2 3 4 5 6 7 8 9

Capaz 1 2 3 4 5 6 7 8 9

Feliz 1 2 3 4 5 6 7 8 9

Horrível 1 2 3 4 5 6 7 8 9

Perigoso 1 2 3 4 5 6 7 8 9

Confiável 1 2 3 4 5 6 7 8 9

Assustador 1 2 3 4 5 6 7 8 9

Competente 1 2 3 4 5 6 7 8 9

Sensível 1 2 3 4 5 6 7 8 9

Responsivo 1 2 3 4 5 6 7 8 9

Agressivo 1 2 3 4 5 6 7 8 9

Emocional 1 2 3 4 5 6 7 8 9

Interativo 1 2 3 4 5 6 7 8 9

Estranho 1 2 3 4 5 6 7 8 9

Conhecedor 1 2 3 4 5 6 7 8 9

Orgânico 1 2 3 4 5 6 7 8 9

Social 1 2 3 4 5 6 7 8 9
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Instruções:

• Tendo em conta a interacção com o robot, indica quão perto te sentiste em relação ao robot
durante o jogo.

• Faz uma cruz na resposta que melhor se adequa ao que sentiste.
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Por último, completa com os teus dados demográficos
(não adiciones o teu nome):

Género: 2 Feminino 2Masculino 2 Outro/Não quero dizer

Idade:

Profissão:

Curso (se aplicável):

Ano de curso:

Familiaridade com robots (selecciona uma das opções abaixo)

Nunca tinha interagido com um robot2
Já tinha interagido com um robot antes desta experiência2 Quantas vezes? ___

Em relação ao teu conhecimento e experiência musical,

• Selecciona o número que achas que te representa melhor para cada uma das linhas abaixo.

Não sei tocar nenhum
instrumento musical 1 2 3 4 5 6 Consigo dar aulas de algum

instrumento musical

Não sei ler pautas musicais 1 2 3 4 5 6 Leio fluentemente pautas
musicais

Obrigado por teres feito parte deste estudo.
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