
Developing Interactive Embodied Characters
using the Thalamus Framework:

A Collaborative Approach

Tiago Ribeiro1, Eugenio di Tullio1, Lee J. Corrigan2, Aidan Jones2, Fotios
Papadopoulos2, Ruth Aylett3, Ginevra Castellano2, and Ana Paiva1

1 INESC-ID & Instituto Superior Técnico, Universidade de Lisboa, Portugal
tiago.ribeiro@gaips.inesc-id.pt

2 University of Birmingham, United Kingdom
3 School of Mathematical and Computer Sciences, Heriot-Watt University

Edinburgh, UK

Abstract. We address the situation of developing interactive scenarios
featuring embodied characters that interact with users through various
types of media easily presents as a challenge. Some of the problems that
developers face are on collaborating while developing remotely, integrat-
ing all the independently developed components, and incrementally de-
veloping a system in such way that the developed components can be
used since their incorporation, throughout the intermediate phases of
development, and on to the final system. We describe how the Thalamus
framework addresses these issues, and how it is being used on a large
project that targets developing this type of scenarios. A case study is
presented, illustrating actual development of such scenario which was
then used for a Wizard-of-Oz study.

Keywords: embodied characters, component integration framework, so-
cial robotics, BML

1 Introduction

As scientists, we envision the creation of autonomous artificial characters that
are able to interact with humans in a natural way. It seems that interactive
technologies are evolving enough to provide this; however we still strive to figure
out how to integrate artificial characters, virtual environments, and our physical
world in a seamless interaction. Current applications that feature interactive em-
bodied agents tend to integrate several technologies together, into larger holistic
systems.

One particularly interesting field of application that features these kind of
holistic systems are the ones involving socially interactive robots [3]. Our work
is part of the EU FP7 EMOTE Project4. The project aims at developing em-
pathic robotic tutors that can interact with school children through multimedia
applications in order to improve learning.

4 http://www.emote-project.eu/



2

In this field of human-robot interaction, users interact with an agent, em-
bodied as a robot. This robot is normally regarded by the user as the actual
artificially intelligent being. However, it frequently turns out that technically,
the robot acts solely as an embodiment and does not actually contain what is
regarded as the artificial intelligence. This intelligence will most likely be running
on separate computers which communicate with and control the robot [4]. It is
also becoming common to have external third-party components extending the
interaction environment, such as capture devices (e.g. Microsoft c© Kinect c©5) or
touch-tables. Current mobile devices can also be used to extend the interaction,
providing the physical robot with a ubiquitous virtual form, in a process called
migration [9].

The requirements for this type of tutor and interaction environment thus
aims us at exploring component-based embodied agents in which components
can be reused in different scenarios.

This paper describes Thalamus, our component integration framework, de-
veloped in order to support the development of interactive agents that can seam-
lessly integrate the agent’s logic with components for both various embodiments
(virtual or robotic) and mixed environments (virtual and physical). We describe
how it is being used in EMOTE for collaboratively developing the overall system
that includes a robotic character (tutor), a touch-based video-game, perceptual
components, and high-level behaviour control. We present a case study in which
the tutor is controlled in a Wizard-of-Oz setting, and how the same components
can still be used when we replace the wizard with an autonomous agent.

2 Related Work

Several authors have faced the kind of problems we refer to, and as such, have
proposed other architectures before. Schröeder developed the SEMAINE API,
which was used in the EU FP7 Semaine Project6. This is a component integra-
tion framework, based on the principles of asynchronous messaging middleware.
Its architecture, however, has a pipeline message flow, meaning that it follows
in the traditional sense-think-act loop of interactive agents. The author points
out two key requirements for a framework of this kind: Infrastructure, meaning
that components must be able to run on different programming languages and
operating systems; and Communication, meaning that components must follow
suitable representation formats, which should be standards where possible[8].

CMION was developed in the context of the EU FP7 LIREC7. It is a mind-
body framework for integrating sensors and actuators through various degrees of
abstraction. It was designed especially for allowing agent migration (transferring
the agent’s identify to a different embodiment). As such, it abstractly encapsu-
lates functionalities of an embodiment into what they call competencies. These
competencies share information through a blackboard component. By defining

5 http://www.microsoft.com/en-us/kinectforwindows/
6 http://www.semaine-project.eu/
7 http://lirec.eu/



3

an embodiment as a set of competencies, agents can then migrate to other em-
bodiments, as long as those implement the same type of competencies[2].

Thalamus was first also developed for the same LIREC project[6]. I was
initially developed as an embodiment-independent BML scheduler which was
used to run BML on robots. It also provided interaction between high-level
perception structures (PML) and the BML plans, so that an agent’s behaviour
could be planned to interact with asynchronous events from the environment.

More recently, the same authors have presented the Censys Model[7]. Cen-
sys serves as a theoretical-to-technical foundation on how developers can design
and structure agents following some concepts taken from philosophy and neuro-
science, in order to break the sense-think-act loop of traditional agents. What
Censys proposes is that there is no need to explicitly define a Mind or a Body
in an agent. The Mind process can be built out of several interacting processes,
which exchange information. The Body processes would be all the processes that
are capable of turning the higher-level behaviour instructions onto low-level body
actions, and the low level perceptual data into higher-level representations that
can be understood by other components. The behaviour realization components
do not event have to be the same as the perception components. This allows to
more easily reuse components in different applications, by replacing only spe-
cific parts of the system. In a Censys architecture, the flow of communication is
asynchronous and does not follow a predefined path (pipeline). This allows sev-
eral modules to perform lower-level autonomous behaviour, while other modules
simultaneously process and provide higher-level information.

ROS - Robot Operating System is a popular middleware for robotics that
provides a common communication layer to enable different types of sensors, mo-
tors and other components to exchange data[5]. ROS is module-based, meaning
that a ROS-based robot actually runs several different modules, being each one
of them responsible for controlling one or more components of the robot. They
communicate based on a message oriented middleware (MOM). This is accom-
plished through a publish-subscribe pattern, in which each module specifies the
type of messages it wants to receive (subscription), so that each time another
module produces that message (publication), the subscribed modules receive it.

3 Thalamus as a modular framework for interactive
embodied agents

Thalamus was initially developed as a cross-media body interface for artificial
embodied characters[6]. It was based on the SAIBA framework [1], and devel-
oped mostly as a BML scheduler, with the additional capability of supporting
abstract perceptions which could interact with BML actions, in order to allow
for continuous interaction with a character. By providing only the scheduling
and not the realization functionality of BML, it can be used with different em-
bodiments, both virtual and robotic.



4

3.1 Motivation

We have now adapted Thalamus to follow on the Censys model[7], thus turn-
ing it into a more general component-integration framework. Traditionally, the
body of an embodied agent framework contains all the physical interfaces of the
character, both in terms of actuation and perception. However, we consider that
the interface with the environment can be composed of several components.

An example of this would be an interactive scenario featuring an expressive
robot and a Kinect c© camera for perceiving the user. An interactive system
should be modular enough to allow replacing the robot by another one for the
expressive function, while keeping the Kinect c© for the perceptual function.

By building on Censys, we do not designate any specific component as being
either the body or the mind. This also makes it easier to have a character that
interacts both with the physical environment and with a virtual one.

Taking as example an interactive setting with the robot, the Kinect c©, and a
touch surface/screen, these three components all provide an interface with the
user and the physical environment. However, the touch screen will most likely
be running another application which provides a virtual environment. On such a
setting, we do not consider it appropriate to strictly define the body as a specific
component of our system.

The main new feature we have introduced into Thalamus is the MOM mecha-
nism, which is designed to integrate with the scheduler. This integration between
scheduler and MOM allows to have the asynchronous and abstract sides of com-
munication given by the MOM, while still supporting synchronously distributed
behaviours that run in a BML-like manner. However, the Thalamus scheduler
is more abstract than BML, which allows it to synchronize actions and events
that do not only originate from BML-based behaviour.

3.2 Architecture

Figure 1 shows an overview of how Thalamus is currently structured. The
Thalamus Master (Master) is the main node which centralizes all communica-
tion that runs between different Thalamus Modules. Both the Master and each
of the Modules can run either in the same or in different computers, as the
communication is established over some type of network protocol. As described
on the Censys model, each Module can subscribe and publish both Actions and
Perceptions.

In Thalamus, both of these are treated as Events. We distinguished them
mostly for easier design, development and comprehension of the agents. The
figure also shows the MOM-based manager as the central part of the framework,
and how it is tightly linked with the scheduler.

The Master maintains a proxy to each of the Modules that are connected, in
order to manage the communication between these two parts. Each Module actu-
ally communicates with it’s specific Module Proxy, both to subscribe, announce,
publish and receive events. Every time the configuration of the connected mod-
ules changes (i.e, some module connects or disconnects from the system), all the



5

Fig. 1: The current Thalamus Framework architecture.

available Event definitions are broadcast to all Modules. This allows Modules to
know what is currently available in the system, and if necessary, adapt the way
they behave.

Models that exchange the same type of Events must all follow a pre-defined
Event structure in order to consider the same parameters for the transmitted
Event. These are specified outside of any Module, in shared libraries. Each library
can contain several groups of Events, which we called Interfaces. These Interfaces
are defined externally by the agent developers, and should include all the Events
that are necessary for implementing a specific kind of functionality.

Figure 2 shows an example in which several Modules subscribe and publish
to Events which are defined by Interfaces in separate libraries. By subscribing
to a specific Interface, the Module subscribes to all Events defined in it. Each
Module can subscribe or publish to as many Interfaces as the agent developers
consider the Module to be responsible for.

Fig. 2: Example scheme of how different modules publish and subscribe to events.



6

3.3 Implementation and Development Workflow

Thalamus is currently implemented in C#/dotnet. It can run either as a library,
or as a standalone application, with its own GUI. The Master node generally runs
in the standalone form. All the other Modules run as separate applications by
implementing the ThalamusClient class. In order to publish events, each Module
also contains an instance of a ThalamusPublisher class. We are currently using
the XML-RPC.Net8 library for remote message invocation between the Modules
and the Master.

The framework is open-source, and is currently available through a Mercurial
repository in Sourceforge9. There is a README.txt file which includes the basic
workflow with Thalamus, and a Documentation folder with instructions on how
to start writing modules.

Thalamus also includes a simple GUI which provides features like:

– Creating a Character, which will automatically receive connections from any
Modules;

– Viewing the Modules that are connected to such Character;
– Manually triggering Actions and Perceptions, for debugging and testing pur-

poses;
– Event viewer with filters.

4 Case Study: The Modular Wizard-of-Oz

Thalamus is currently being use as the backbone integration platform in the
European FP7 EMOTE project. Several partners are using it collaboratively to
develop different Modules that communicate with each other in order to achieve
the project’s goals. The project aims at developing empathic robotic tutors that
can interact with school children through multimedia applications in order to
improve learning.

4.1 Collaborative platform for large-scale agent development

Several things in Thalamus were developed with collaborative development in
mind. We highlight the method of defining Event Interfaces as separate libraries
that can be shared by different Modules. The Thalamus Master has no knowledge
of these Interfaces and Events. They are all abstracted when sent to the Master,
so that the Master relies only on the type of Event that is being transmitted,
and the rules that it has for who to broadcast it to. This has allowed developers
to work independently on different Modules that communicate with each other
by simply sharing a library which contains the necessary Events.

By having anticipated that a large scale interactive scenario would include
several logical, virtual and physical components, we have made the integration

8 http://xml-rpc.net/
9 http://sourceforge.net/projects/thalamus/



7

process as easy and flexible as possible. Besides the shared Interfaces, all Mod-
ules and the Master have a network communication layer that allows them to
find each other and connect automatically across a local network, and main-
tain such connection even when one Module, or even the Master fails for some
reason (normally during development and debugging of new features). It would
be extremely tedious to require setting up connections manually, and having to
restart all the modules every time something failed.

4.2 Interactive Scenarios

In EMOTE, the tutor is being developed for two different interactive scenar-
ios, both using a robotic embodiment, and a large touch-table. The touch-table
runs a multimedia interactive application (like a video-game). The user interacts
with the system by using the game application. The system also interacts back
through the robotic embodiment, which provides a character with expressive
behaviour.

In a large-scale project, it is common to run tests with initial versions of the
system in order to collect data about how users interact with all the components
that are being developed. In our case, before implementing the final autonomous
robotic tutor, we are going through several mock-up and wizard-of-oz (WoZ)
experiments. This section briefly describes how Thalamus was used to integrate
the components used in a recent WoZ experiment.

Fig. 3: Structure of the Wizard-of-Oz setting. The physical and virtual components are
distinguished.

Figure 3 shows how the current system is structured for the WoZ experiment.
Our physical components are a NAO robot10, a multi-touch table (MTT), and
a Microsoft c© Kinect c©.

The MTT provides both a virtual environment (Game Application) that is
shared by the agent and the user, and is also used for input from the user. The
Kinect captures the user. Currently it is used only for head-tracking.

10 http://www.aldebaran.com/en



8

The NAO Robot provides an embodiment that exhibits expressive behaviour
towards the user. Such expressive behavior is generated and managed by a be-
havior planner module which we call Scenica. This module is constantly updated
with information from the Perception module (which interfaces with the Kinect).
It also receives coordinate information from the Game Application, in order to
be able to instruct the robot to gaze, point or wave towards specific points on
the screen. Scenica also provides some semi-autonomous behaviour. It manages
gazing behaviour so that the Wizard does not have to deal with all that.

The Wizard uses the WoZ panel to control the flow of the game, to parametrize
some of Scenica’s semi-autonomous behaviour, and to manually select high-level
FML utterances. These utterances are dialogue acts which were previously writ-
ten and tagged both with non-verbal and game instructions. The FML is broken
down in Scenica into BML actions and game-actions. The actions are then sent
through Thalamus to be scheduled and/or routed to other modules (NAO Robot
Module and Game Application).

As stated earlier, all the modules communicate over a network. That allows
for easy deployment of different Modules across different machines. The NAO
Robot Module runs on the actual robot, using Mono11. The Game Application
runs on the MTT, while the remaining modules (Scenica, Perception and WoZ)
run on another computer. As we are implementing more intensive algorithms for
the Perception module, in the future we may decide to deploy this to a dedicated
machine with specific hardware.

4.3 Feedback from the developers

EMOTE’s technical team has been collaboratively developing the described sys-
tem. All of them have experience and degrees related with Computer Science, and
are either pursuing a PhD degree, or working as post-doc in the project. They
were questioned regarding the strengths and weaknesses of Thalamus. Their
qualitative feedback is reported in the following paragraphs.

A. Strengths
Development
– Modules can easily be added, removed and reused;
– Easy to debug with the event viewer;
– Simple concept of events and actions;
– Underlying mechanics are abstracted. The modules’ internal logic are

separated from the communication level;
– Easy to specify what information a Module publishes and easy to discover

what you can subscribe to;
– Made it easy to work with NAO robot by using BML;
– Distributed computing allows distributing resources;
– Concentration on developing primary code without actually knowing

which other modules the interface would need to communicate with;

11 http://www.mono-project.com/Main_Page



9

– Run on different OS and easy to interop with different languages.
– Each Module synchronizes its internal clock with the Master, in order to

provide logging with near-matching time-stamps;
Collaboration
– Collaboration with other developers enhanced thanks to the indepen-

dence of each Module;
– Each developer is abstracted away from the concerns of others;
– Development is easily separated, implementation within modules can be

changed simply and easily without affecting other modules;
– Each developer needed only to agree on the specification of their require-

ments for the Events’ format (name and parameters);
– Development was not drastically affected by partners changing require-

ments on a near daily basis;
– After specifying the interfaces, each developer works on its own module,

and once ready, things fit easily.
Networking
– A module can crash and then reconnect to Thalamus without causing

any issues to other modules;
– No need for set-ups e.g. ip-addresses or names;

B. Weaknesses
Development
– Some limitations on the type of data that can be sent or received from

the clients;
– Complex classes or enumerators are not well managed (even though they

can be used);
– Sometimes Thalamus Standalone crashes;
– All modules should be running the same version of Thalamus (from

sourceforge) otherwise they can’t communicate;
Networking
– The discovery of the Thalamus Master can be improved.
– Impossible to select which network adapter to use;
– On some versions of Windows c©, requires removing UAC12 and firewall

protection to work;
– Network failure sometimes caused some repeated messages;

5 Conclusions and Future Work

We have described how the Thalamus framework is being used in a large project
in which different developers working remotely are able to collaborate on building
an interactive scenario featuring a robotic character. The developers have pointed
out some of the main benefits and handicaps collected during their experience of
working together. We believe that on projects integrating so many technologies,
there should be focus on how the backbone tools and frameworks are adequate
for the needs of the developers. International projects often require development

12 User Access Control



10

across different countries, habits, and time zones. We also address the re-usability
of components in different scenarios as a benefit of planning ahead with an eas-
ily extensible and modular framework. The kind of abstraction and high-level
integration we provide with Thalamus is also directed towards more recent ap-
plications, which often integrate virtual and physical environments, with virtual
and physical characters.

There are, of course, points we still consider to be missing. One of them is
a mechanism for managing conflicts, in the case of several Modules publishing
or subscribing to the same type of Messages. This will highly depend on what
is the purpose of the agent, which Modules are being used, and how each of
them works. As such, we intend to provide Thalamus only with mechanisms for
establishing rules, while the actual rules should be established by the developers.

There are still some network issues to be solved. In the future we may want
to replace the XML-RPC-based communications layer with a more stable and
efficient implementation.

Acknowledgments

This work was partially supported by the European Commission (EC) and was
funded by the EU FP7 ICT-317923 project EMOTE and partially supported by
national funds through FCT - Fundação para a Ciência e a Tecnologia, under
the project PEst-OE/EEI/LA0021/2013.

References

1. Kopp, S., Krenn, B., Marsella, S.: Towards a common framework for multimodal
generation: The behavior markup language. In: Intelligent Virtual Agents. pp. 205–
217 (2006)

2. Kriegel, M., Aylett, R., Vala, M., Paiva, A.: Robots Meet IVAs : A Mind-Body
Interface for Migrating Artificial Intelligent Agents. In: Intelligent Virtual Agents.
pp. 282–295 (2011)

3. Leite, I., Martinho, C., Paiva, A.: Social Robots for Long-Term Interaction: A Sur-
vey. International Journal of Social Robotics 5(2), 291–308 (Jan 2013)

4. Pereira, A., Prada, R., Paiva, A.: Socially present board game opponents. In: Ad-
vances in Computer Entertainment. pp. 101–116 (2012)

5. Quigley, M., Gerkey, B.: ROS: an open-source Robot Operating System. ICRA
workshop on open source software. 3(3.2) (2009)

6. Ribeiro, T., Vala, M., Paiva, A.: Thalamus: Closing the mind-body loop in interac-
tive embodied characters. In: Intelligent virtual agents. pp. 189–195 (2012)

7. Ribeiro, T., Vala, M., Paiva, A.: Censys: A Model for Distributed Embodied Cog-
nition. In: Intelligent Virtual Agents. pp. 58–67 (2013)

8. Schröder, M.: The SEMAINE API: A component integration framework for a natu-
rally interacting and emotionally competent Embodied Conversational Agent. Ph.D.
thesis (2012)

9. Segura, E.M., Cramer, H., Gomes, P.F., Paiva, A.: Revive ! Reactions to Migration
Between Different Embodiments When Playing With Robotic Pets Categories and
Subject Descriptors pp. 88–97 (2012)


