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Abstract 
This chapter describes current advances in emotion modelling for social robots. It begins by 

contextualising the role of emotions in social robots, considering the concept of the Affective Loop. It 

describes a number of elements for the synthesis and expression of emotions through robotic 

embodiments and provides an overview of the area of emotional adaptation and empathy in social robots.  
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1. Introduction: Robots in the Affective Loop 

 

The concept of a self-operating machine that resembles humans and behaves similarly to humans dates to 

ancient civilizations. From Homer, Leonardo da Vinci and Isaac Asimov, robots have captured the 

imagination of philosophers and writers throughout history, and robots continue to inspire us. Robotics is 

a technology that is expected to change the world and the way we live. During the early stages of robotics 

research, much of the development was focused on the usefulness of robots in industrial settings. As 

robots progress from these very controlled settings and laboratory environments and are deployed in 

homes and social contexts, the ability of robots to interact with humans in ways that resemble human 

interaction becomes increasingly more relevant (Breazeal, 2009). Emotions are essential for that 

interaction. To portray emotions in robots, researchers require methods to model and express emotions 

with different embodiments and distinct manners. Such modelling of emotions allows the placement of 

robots in the context of the Affective Loop to foster social interaction. As defined by Höök (2009), the 

Affective Loop is the interactive process in which “the user [of the system] first expresses her emotions 

through some physical interaction involving her body, for example, through gestures or manipulations; 

and the system then responds by generating affective expression, using for example, colours, animations, 

and haptics” which “in turn affects the user (mind and body) making the user respond and step-by-step 

feel more and more involved with the system.” 

 

To establish this Affective Loop between users and robots (Figure 1.1), robots will require an affect 

detection system that recognises, among other states, whether the user is experiencing positive or negative 

feelings, and a reasoning and action selection mechanism that chooses the optimum emotional response to 

display at a cognitive level. The method by which robots express the intended affective states should be 

effective (to be perceived by the users), and the actions of the emotional robot will affect the user (the 

third step of the Affective Loop). The robot perceives the user with the goal of personalising the 

interaction by analysing the user’s responses to the various affective expressions of the robot and adapting 

its emotional behaviour for each particular user. 



 

 

 
Figure 1.1. Affective Loop of Emotional Robots. 

 

Affective interactions play different roles and have various purposes in the context of Human-Robot 

Interaction (HRI). Among others, we can distinguish the following: 

 

 

1 Give the illusion of life - The design of adaptive emotional behaviour must use particular caution 

to avoid unexpected or unintelligible behaviour. This problem can be solved by following a 

number of guidelines on the methods for creating expressive behaviour in robots, which provide 

the robots with the “illusion of life” (Ribeiro & Paiva, 2012). This illusion will lead to the user’s 

“suspension of disbelief,” which increases the perception of social presence, thus rendering the 

robot as a believable character (Bates, 1994). 

2 Augment engagement - Emotions contribute to engagement in a social interaction context. 

Engagement, in this context, is defined as “the process by which two (or more) participants 

establish, maintain and end their perceived connection” (Sidner et al., 2004) and has received 

increasingly more attention by the HRI community (Rich et al., 2010). As previous research has 

highlighted, appropriate displays of affect have a significant effect on the user’s engagement 

while interacting with social robots (Leite et al., 2012). 

3 Augment social presence in the long-term - The lack of adaptive emotional behaviour decreases 

the user’s perception of social presence, especially during long-term interactions (Leite et al., 

2009), which in turn renders the robots to be non-believable characters (Bates, 1994). To be 

perceived as socially present, social robots must not only convey believable affective expressions, 

but also be able to do so in an intelligent and personalised manner, for example, by gradually 

adapting their affective behaviour to the particular needs and/or preferences of the users. 

 



This chapter will discuss the modelling of emotions in robots, not only through explicit computational 

mechanisms in which the emotions are captured but also in terms of adaptation, personalisation and 

expression, leading our emotional robots to become empathic, emotional creatures that can sustain the 

Affective Loop with the user. 

 

2. Creating Synthetic Emotions in Robots 

 

Robots possess the power to convey the illusion of life simply by their physical presence and simple 

movements. When a robot moves towards a door and suddenly backs up, one may interpret its actions as 

avoidance and fear. Our perception of the robots’ actions may be biased, or perhaps enriched, by our 

inclination to suspend our disbelief and see robots as intelligent creatures that act according to their 

desires, goals and emotions. However, a robot’s behaviour can result from computational mechanisms 

that do not explicitly capture any of those aspects. Significant work on emotional behaviour in robots has 

been driven by the fact that simple behaviour may “fool us” by leading us to perceive robots as having 

“emotions” when, in reality, those “emotions” are not explicitly modelled and simply arise as an emergent 

effect of specific simple patterns of behaviour. 

 

When situations are such that a robot may need to interact with users at a higher level, often using natural 

language and gestures, and their actions need to be rich enough to convey some goal-oriented behaviour, 

emotions may represent a way to model different responses and thus provide the robot with more 

believable and appropriate responses to the tasks. In those situations, emotions may represent abstract 

constructs that simplify the generation of robots’ behaviours, as described by Leite et al. (2013). In this 

case, emotion modelling in robots becomes explicit, and specific architectures for that modelling have 

emerged in recent years. Emotions, modelled explicitly, may affect not only the action selection but also 

other cognitive processes such as reasoning, planning and learning. As this area grows, new types of 

architectures exploring different mental processes (e.g., theory of mind or affect regulation) are also 

arising, allowing robots to perform better in the world and interact with humans in a more natural way. 

 

In general, emotional architectures for robots (and virtual agents) seek inspiration from the way humans 

and other species perceive, reason, learn and act upon the world. We may distinguish different types of 

architectures according to their inspiration (from a neurobiological inspiration, to more psychological or 

data-driven models); the affective states they try to model (e.g., emotions, moods, personality); the types 

of processes captured (e.g., appraisal, coping); the integration with other cognitive capabilities; and the 

expressive power they possess. Most of the existing types of architectures are built with different 

processes and levels, thus extending a generic hybrid model. As argued by A. Sloman (2002), different 

types of architectures will support distinct collections of states and processes. A number of these types 

rely on symbolic models to represent the perceptual elements of the world, whereas others take a non-

symbolic approach based on neural modelling. 

 

Considering the neurobiological approaches, they generally take the view that modelling of emotions can 

be done through different computational constructs associated with structures from the central nervous 

system such as the amygdala and the hypothalamus (Arbib, 2004). One of the earlier types of 

architectures for emotions in robots was Cathexis (Velazquez, 1998), which is a computational model of 



emotions and action selection inspired by neurobiological theories. The architecture integrates drives and 

emotions in a way that guides the behaviours and decision making of the robot. 

 

Many models capture affective states in an emergent manner, as the resulting pattern of behaviour arising 

from a variety of different processes embedded in the agent. More explicit modelling is accomplished by 

representing affective states using a symbolic approach. The classic BDI reference model (Wooldridge, 

1995) considers “Beliefs, Desires and Intentions” to be the basic mental attitudes for generating an 

agent’s intelligent behaviour. This reference model has been extended to capture other mental states, in 

particular, emotions (see, for example, Gratch & Marsella, 2004 and Dias & Paiva, 2005). The majority of 

these types of architectures focus primarily on representing emotional states (e.g., quickly active, short 

and focused states such as anger or joy), in particular the six basic emotional states (e.g., anger, joy, 

surprise, sadness, disgust and fear), as hypothesised by Ekman & Friesen (1975). Other affective states 

have been considered, such as moods (for example by Leite et al., 2012a and Álvarez 2010), dispositions, 

sentiments, or personality (Tapus et al., 2008; Woods et al., 2005). 

 

The construction of the models mentioned above rely on theories of specific emotion, which are adopted 

as the basis for a computational system and thus dictate how an emotional state is triggered in a robot. 

One of the most influential theories, proposed by Magda Arnold in the 1960s, considers that emotions 

arise from the appraisal of situations and that an emotion is thus a result of the evaluation of the 

interconnection between the self and the environment and its objects (see Chapter 5 in this volume for 

more details on appraisal models of emotion). Appraisals result from an attraction towards or repulsion 

from objects, which in turn give a valence to the emotion. In robots, we can imagine the process of 

emotion generation as resulting from the subjective evaluation of the situation that the robot is facing. If a 

robot is presented with a situation that is good for itself (for example, if it is playing a game and is at an 

advantage), the situation should lead to an internal process that will create specific variables to attain 

values that lead to the triggering of the emotional status of joy. 

 

The process of appraising the situation has been treated differently in various types of emotion 

architectures for robots. In the iCat chess player (Leite et al., 2008), a robot that provides affective 

feedback to the user, emotions result from affective signals that emerge from an anticipatory system 

containing a predictive model of itself and/or of its environment (Martinho & Paiva 2006). This 

anticipatory system generates an affective signal resulting from the mismatch between what is expected 

and what the robot senses. If the robot expects the user to perform well in the game and the user makes a 

mistake, it is an unexpected and positive (for the robot) situation leading to the generation of a positive 

valence affective signal. 

 

Emotions condition and structure our perceptions, direct our attention and prepare us for action. The 

signalling in the nervous system that occurs from the primary appraisal processes is key to emotional 

priming and thus to our perception of emotion. Robots are situated in and rely strongly on their 

perceptions from the environment to act upon that environment. In an emotional robot, not only are its 

perceptual processes affected by its emotional states, but a number of emotional states may also arise 

directly from those “untreated” perceptions. For example, Kismet (Breazeal, 2003) possessed a quite 

advanced perceptual system and evaluated external stimuli according to the robot’s context in terms of its 

affective state and drives. 



 

Emotions affect behaviour. They are associated with different types of actions, such as fight or flight 

responses. In his seminal work, N. Frijda (1986) argued that our autonomic activity, the core of our 

emotional states, leads to states of “action readiness”. As a response to the environment, emotions prepare 

the individual for action. Many different types of action tendencies have been studied and can be captured 

in our agent architectures. As such, one should consider the ways in which the affective states influence 

the actions of the agents and which types of internal mechanisms are considered in the process of action 

selection, considering emotional states. Behaviour generation was done in the iGrace system, which uses 

a database of emotional experiences as the basis for action. 

 

 

3. Emotional Expression in Robots: the Illusion of 

Robotic Life 

 

It is necessary for a social robot to model and select actions based on affective goals and conditions, and a 

robot must be able to properly express those actions with an adequate affective display. This expression 

of emotion can be observed in the Affective Loop as the connection point between Emotional Behaviour 

Generation (resulting from the use of an emotional model) and Emotion Elicitation in the user. How 

should one generate expressive behaviour in robots that could be interpreted correctly by humans? How 

can such expressive behaviour be generated in a way that is flexible and, as much as possible, transposed 

between different embodiments? 

 

In terms of concrete emotions, studies from psychology can inform us about how humans interpret 

emotions and their expression. Authors such as Ekman and Friesen (1975), Russell (1994) and Elfenbein 

and Ambady (2002) have studied and published papers about how the human ability to recognize 

emotions in other humans is universal. If it were possible to develop robotic characters able to process 

and express emotions as humans do, then these links to psychology would most likely be the best starting 

point. The majority of current robots are very limited in terms of expression, and many of them lack a 

number of expressive features that humans have, such as a mouth or facial muscles. This has led many 

researchers to turn to the arts in search of inspiration and solutions. 

 

3.1 Principles of animation for expressing emotions in robots 

 

The influential work by Bates (1994) was one of the first to seek inspiration from the arts, in particular 

from The Illusion of Life, a well-known book by Frank Thomas and Ollie Johnston, in which they 

describe over 60 years of experience in creating characters at the Walt Disney Animation Studios 

(Thomas & Johnston, 1981). The book intrinsically refers to the Affective Loop - the way in which 

Disney characters are brought to (an illusion of) life, by enacting stories which “make people laugh - and 

even cry.” Other authors have followed the identical philosophy, including Reilly (1996) who 

demonstrated that “it is artists who best know how to create believable characters and how to imbue them 

with emotions.” More recently, van Breemen (2004) has taken this concept into the expressive robotics 



field by claiming that “user-interface robots have the same problem as the early day of animation: they 

miss the illusion of life.” 

 

These ideas lead the HRI community to look at one key concept for social robotic characters - the concept 

of the robot as a “believable character”. Bates (1994) defines a believable character as “not an honest or 

reliable character, but one that provides the illusion of life, and thus permits the audience’s suspension of 

disbelief.” The core of Thomas & Johnston’s The Illusion of Life is composed of Disney's Twelve 

Principles of Animation. These principles are presented in the book and serve as rules for professional 

animators as guidelines on how to create believable and expressive characters. The reader can refer to the 

book to understand each of the twelve principles from the authors, who were Disney animators. 

 

The attempt to apply these principles of animation to robots has continued for almost a decade. Several 

authors have proposed this method, starting with van Breemen (2004), who defined robot animation as 

“the process of computing how the robot should act such that it is believable and interactive”. His attempt 

was to look at a number of the principles to understand how to create better expressions for the iCat robot, 

and he implemented a method that he named Merging Logic, which corresponds to the principle of Slow 

In/Slow Out. 

 

Wistort (2010) has looked at the Disney principles to discuss how a number of them could be applied to 

robots. He emphasises the need for robots to have expressive eyes and insists that actuated pupils help 

convey life through the eyes. He stresses the need to have silent eyes because most robots rely on motors 

to move their eyes, and these are usually quite noisy. This work is interesting because it tries to bend the 

definition of the principles with a more scientific understanding of how the principles actually work. That 

is a necessary step because the traditional principles help explain the methods that animators should use to 

design animation. When considering social robots, we need to understand how such principles can be 

adapted or extended to work under autonomous animation. 

 

Takayama et al. (2011) used Anticipation, Engagement, Confidence and Timing to enhance the 

readability of a robot’s actions. They refer to the definition of “thinking characters” by Lasseter (1987), in 

which “the animator gives life to the character by connecting its actions with a thought process.” One 

especially interesting distinction they demonstrate is about Functional Motions versus Expressive 

Motions. As robots are part of our physical world, it is likely that they will perform a blend of these two 

types of motions. A simple locomotive behaviour may carry both types of motion: Functional Motion to 

enable the robot to move from one place to another and Expressive Motion to express how the robot is 

feeling. Speaking to or requesting something from someone is functional and expressive. In a number of 

situations, we will want to separate them, as when a robot first looks at a door handle (expressive motion) 

and then grasps it to open the door (functional motion). By looking at the door handle, the robot first 

expresses interest and attention towards the handle, so humans can anticipate that it is going to grasp the 

handle and open the door. 

 

Mead and Mataric (2010) used a number of principles of animation to improve the understanding by 

autistic children of a robot’s intentions. For “Exaggeration”, they were inspired by a process of creating 

caricatures by exaggerating the difference from the mean. The features that uniquely identify an 

expression are isolated, and those features are amplified to make them even more relevant, thus producing 



exaggerated expressions. Gielniak et al. (2012) followed a similar idea but addressed it as a motion signal 

processing technique. They successfully developed an algorithm that creates exaggerated variants of a 

motion in real time by contrasting the motion signal, and they demonstrated this idea by applying it to 

their SIMON robot. 

 

In our recent work, we examined this issue from a holistic point of view by providing insight on how each 

of the traditional principles of animation could be used in robotics and how they could be used to enhance 

the readability of Ekman’s six basic emotions in the EMYS robot (Ribeiro & Paiva, 2012). The majority 

of the traditional principles of animation seem to apply to robot animation. 

 

There is much to understand about how the traditional principles of animation can be applied to robots. 

The major difference that we find is that they are not only robots, but they are also interactive, and 

Disney’s traditional principles were not intended for interactive characters. This difference does not mean 

that we cannot apply the traditional principles, but it does convert the issue into an engineering problem. 

Slow-In/Slow-Out, Arcs and Exaggeration may be easily incorporated into an animation system by 

warping the motion signals. However, what about the other principles? How do we programmatically 

define the use of correct Timing? 

 

3.2. Computing Emotional Expressions in Robots 

 

To support the generation of complex expressive behaviour in robots, we need a flexible and consistent 

architecture. The robotics community, influenced by the work on conversational characters, adopts 

generic frameworks such as the SAIBA (Situation, Agent, Intention, Behaviour, Animation) framework 

(Kopp et al., 2006). This framework, illustrated in Figure 3.1, is divided into three phases: 

Intent Planning produces a Functional Markup Language (FML), which contains a definition of 

that which the character has intended to do. 

Behaviour Planning receives the FML and produces a Behaviour Markup Language (BML) 

(Vilhjalmsson et al., 2009), which contains the specific details about the manner in which the character is 

planning to perform the behaviour generally specified in the FML. 

Behaviour Realisation receives the BML, interprets it regarding the actual character that will 

perform it, and applies the actual behaviours onto the character. In an analogy to film, it can be viewed as 

the actor performing and following the orders of the Director and Casting Director. 

 

 
Figure 3.1: The SAIBA framework. 

 

Although SAIBA was initially intended for virtual characters, a number of authors have applied it to robot 

animation because BML is not character-specific (meaning that an identical BML script can be used by 

different Realisers). It has been used to make the GRETA animated agent interact with an AIBO robot 

(Moubayed et al., 2008) and a NAO robot (Niewiadomski et al., 2011). We have developed a system 



based on BML that allows continuous interaction with robots by providing mechanisms that can cause 

external events (perceptions) to interact with pre-defined BML sequences. Following the trend of 

Niewiadomski et al. (2011) and Kipp et al. (2010), we divided the Behaviour Realisation phase into the 

Behaviour Scheduling and Body Execution sub phases. The system was demonstrated with an interaction 

between an EMYS robot and a NAO robot, with external audio, visual and tangible events (Ribeiro & 

Paiva, 2012). 

 

A popular middleware that was developed by Willow Garage1 is ROS - Robot Operating System (Quigley 

et al., 2009). Although it actually works as a communication layer, there has been a growing development 

of the robots and modules that run it. By having a ROS-compliant robot, one can use any of the ROS 

modules that have been made freely available and can be used especially for navigation, vision, or arm 

manipulation. Following Holroyd & Rich (2012), who recently developed a BML module for ROS, other 

authors may develop expressive modules for ROS that could be shared throughout the robotics 

community. 

 

3.3. Beyond Traditional Emotion Expression in Robots: Using Form, Colour 

and Sound 

 

If we are able to develop a model that can compute an emotion and the intention of its display, we must 

map that to the expressive features of a robot. With as many diverse embodiments as are illustrated in 

Figure 3.2, it is very difficult to generalise on how this mapping could be done. 

 

 
Figure 3.2: Multitude of robotic embodiments along a dimension of Expressive Articulation. Robots on 

the left contain more degrees of freedom available for expressivity.  

 

 

                                                
1 http://www.willowgarage.com/ 

http://www.willowgarage.com/


On the left side of Figure 3.2, with Mid to High Expressive Articulation, we first highlight the work using 

eMuu (Bartneck, 2002), Lino (Krose et al., 2003), EMYS (Ribeiro & Paiva, 2012), Kismet (Breazeal, 

2003), the iCat (Breemen, 2004; Leite et al., 2008) and Leonardo (Breazeal et al., 2004). These robots are 

not humanoids, but they perform emotional expression through the use of many degrees of freedom to try 

to mimic human expressions (in a simplified and iconic way). 

 

With respect to humanoids, there have been studies on emotional expression, especially with the QRIO 

robot (Tanaka et al., 2004) and the NAO robot (Beck et al., 2010). The majority of humanoid robots have 

very simple faces and, as such, rely solely on body expression - which is more difficult to model and 

more ambiguous to read. Hanson Robotics has recently developed the Zeno RoboKind (Hanson et al., 

2009), which features a highly articulated body and a highly expressive face based on muscular features. 

This robot introduces an accessible and flexible platform that contains facial and bodily expression, but 

there are no studies on its expressivity yet. 

 

Focusing on the right side of Figure 3.2 presents an issue. Although social robots are generally designed 

to be expressive, there are some types of robots (social or not) that do not display expressive features. As 

Bethel (2009) notes, search-and-rescue robots are designed to move across disaster zones to find and 

reach victims. Some socially assistive robots may be designed to help elderly or disabled people get out of 

bed and move around, and as such, their purpose is to be steady and move safely, as does the RobCab 

robot (Ljungblad et al., 2012). In a domestic environment, we may have functional robots such as 

Roomba2 (robotic vacuum cleaner) or smaller robots with a minimal design that are intended to behave as 

personal companions and assistants, such as the Mung robot (Kim et al., 2009). These more simplistic 

robots may rely on sound and light to augment their expressivity. Using sound and light can actually be 

considered part of the traditional “Staging” principle of animation because it refers to focusing on the 

elements that are important. One of the ways to achieve that is by properly using sound, music, lights and 

shadows. By re-defining this principle into “Intention”, we do not invalidate these practices because it 

helps focus on the clear meaning of that which the robot is expressing. Recently, a number of researchers 

have augmented the expressivity of a Roomba robot by adding expressive lights (Rea et al., 2012) and an 

expressive tail (Singh & Young, 2012) (Figure 3.3). Other researchers have added a projector to a 

telemedicine robot that could project signals on the ground to demonstrate the robot’s intention (Shindev 

et al., 2012). 

 
Figure 3.3: (a) A Roomba robot modified to include expressive lights (Rea et al., 2012);  

(b) A Roomba robot modified to include an expressive tail (Singh & Young, 2012). 

                                                
2 http://www.irobot.com 



4. Emotion Adaptation in Robots: Towards Empathic 

Robots 

 

An emotional robot should appraise its surrounding environment and react emotionally to it, and it should 

perceive other robots’ and the user’s affective states. Such perception and sensitivity of the other’s 

affective states is essential to place the robot in the Affective Loop. A robot should perceive the user’s 

affective state and act in response to such perceptions. But how can the robot close the loop and 

empathise with the user by providing more appropriate and adaptive responses during the interaction? 

 

Empathy can be defined as “an affective response more appropriate to someone else’s situation than to 

one’s own,” which can result from mechanisms such as motor mimicry, classical conditioning, direct 

association of cues from the person with whom we are empathising, mediated association of cues through 

semantic processing, and perspective-taking (Hoffman, 2001). Hoffman considers the first three 

mechanisms to be automatic and involuntary, whereas the last two are higher-order cognitive modes. The 

process of empathy can go beyond a merely affective response in tune with the affective state of the 

person with whom we are empathising. Empathy has been considered one of the major determinants of 

prosocial actions (Feshbach, 1978; Eisenberg & Fabes, 1990; Davis, 1994), i.e., “voluntary behaviour 

intended to benefit another such as helping, donating, sharing and comforting” (Eisenberg et al., 1997). In 

the literature, prosocial behaviours are often designated as socially supportive behaviours (Cutrona et al., 

1990). These behaviours are more likely to be triggered when observing someone in pain, danger or other 

types of distress (Hoffman, 2001). 

 

In the virtual agents community, empathy is a research topic that has received much attention in the last 

decade (Paiva et al., 2004; Prendinger & Ishizuka 2005; Bickmore & Picard, 2005; Brave et al., 2005; 

McQuiggan & Lester, 2007). In HRI, the research addressing empathy has recently appeared. One 

possible reason for this delay is that robots share our physical space, and recognising the user’s affective 

state is thus a more challenging task because the interactions tend to be more open-ended. When users 

interact with virtual agents, they are usually in front of a computer screen, and there is frequently the 

possibility of selecting predefined dialogues or actions to inform the agent about the user’s affective state 

(Bickmore & Picard, 2005). Recent advances in automatic affect recognition using different modalities, 

including vision, speech or physiological signals, contribute significantly to overcoming this obstacle (for 

a review, see Zeng et al., 2009). Many important questions remain unanswered: Will social robots benefit 

for being empathic? Will interactions become more natural and enjoyable if robots can adapt their 

behaviour to the user’s affective state? What is the state of the art on empathic robots? 

 

A significant segment of the research addressing empathy in social robots has focused on automatic and 

involuntary processes (as defined by Hoffman), such as mimicking the user’s affective state. Hegel et al. 

(2006) presented a study with an anthropomorphic robot that recognises the user’s emotional state 

through speech intonation and mirrors the inferred state using a corresponding facial expression. The 

results suggested that the users who interacted with this version of the robot found the robot’s responses 

to be more adequate in their appropriateness to the social situation and timing than the users who 

interacted with the robot without affective expressions. In another study (Riek et al., 2010), a robot in the 

form of a chimpanzee’s head mimicked the user’s mouth and head movements. After interacting with this 



robot, most of the subjects considered the interaction to be more satisfactory than participants who 

interacted with a version of the robot without the mimicking capabilities. 

 

Perspective taking is considered one of the most “empathy-arousing” mechanisms in humans. The process 

of taking the perspective of others and attributing mental states such as thoughts, desires, knowledge and 

intentions that are not directly observable is known as Theory of Mind (Premack, 1978; Baron-Cohen, 

1997). This capability has been considered an essential component of empathy by several authors 

(Feshbach, 1978; Baron-Cohen et al., 2009), especially because of its importance in emotion recognition 

(Adolphs 2002; Heberlein et al., 2009). Appraising the context of a task can be computationally more 

reliable than the affect recognition mechanisms based on other modalities used today, and perspective 

taking has also been used in HRI. Cramer et al. (2010) used perspective taking to drive the behaviour of a 

social robot in a study that was conducted to assess how empathy affects human attitudes towards robots. 

Using a between-subjects design, two groups of participants saw a four-minute video with an actor 

playing a cooperative game with an iCat robot. In one condition, the robot accurately expressed empathic 

behaviour toward the actor, whereas in the other condition, the robot inaccurately expressed empathic 

behaviour toward the actor (i.e., incongruent to the situation). Because the robot varied its empathic 

behaviour according to the performance of the other player in the game, we say that it was taking the 

perspective of the human in the scenario. In this study, there was a significant negative effect on the 

participants’ trust in the inaccurate empathic behaviour condition. Conversely, the participants who 

observed the robot displaying accurate empathic behaviours perceived their relationship with the robot as 

closer than those participants who observed the robot inaccurately expressing empathic behaviour. 

 

In our previous work (Leite et al., 2013), we presented an empathic model based on perspective taking. 

To evaluate this model, we developed a scenario in which an iCat robot acts as a social companion to two 

players in a chess game. The robot reacted to the moves played on the chessboard by displaying several 

facial expressions and verbal utterances, showing empathic behaviour towards one player and behaving 

neutrally towards the other. The empathic responses were modulated by the relationship with the players 

(companion or opponent). The results of this study indicate that the users towards whom the robot 

behaved empathically perceived the robot as friendlier, suggesting that empathy plays a key role in HRI. 

There are a number of examples of perspective taking in HRI with the goal of improving a robot’s 

effectiveness in learning simple tasks from ambiguous demonstrations (Breazeal et al, 2006) or 

facilitating human-robot communication (Torrey et al., 2010). 

 

In cases in which a social robot is able to display empathy by changing its behaviour according to the 

affective state that the user is experiencing, one can consider that adaptation to the user is occurring. 

There are several types of empathic responses that a person (or, eventually, a social robot) can take, from 

affective reactions to socially supportive behaviours. A relevant question arises as to how should robots 

select appropriate empathic responses for a particular user. 

 

The answer to this question poses another opportunity for personalisation. Because the theoretical 

literature on empathy does not clearly specify which types of empathic responses are more likely to be 

triggered by certain affective states, the robot can adjust its empathic behaviour based on the preferences 

of particular users. In a recent empirical study, we found that the presence of adaptive empathic 

behaviours in a social robot resulted in the perception of the robot by children as being socially supportive 



in a similar extent to the way in which they feel about their peers (Leite et al., 2012a). In this study, the 

robot was able to use a no-regret Reinforcement Learning (RL) algorithm to learn the types of supportive 

behaviours that were more effective for each child, i.e., the behaviours that were more likely to increase a 

positive affective state in the child. The reward function of the RL algorithm was based on the non-verbal 

responses of the child captured a few seconds after the robot employed each supportive strategy. At each 

time step, no-regret algorithms make the best use of the feedback received so far. A policy that allows the 

iCat to select the next supportive behaviour by considering the previous history of employed behaviours 

and consequent rewards was implemented to learn the most effective supportive behaviours for a 

particular user and adapt to the interaction accordingly. The intuition that is the basis of this policy is 

simple: the robot selects the supportive behaviours with higher average rewards more often because they 

have higher probabilities. There is a possibility that other behaviours could be selected because although 

they had lower rewards in the past, the user may find them more suitable in the future. 

 

Other researchers have explored the user’s affective state as a mechanism to adapt the robot’s behaviours. 

Liu et al. (2008) developed a scenario in which the robot learns the most appropriate behaviours by 

accounting for the physiological signals of the children. A preliminary study conducted with six autistic 

children showed that the robot was able to select appropriate behaviours based on the attraction levels 

expressed by the children collected through physiological signals. The question of adaptation has received 

particular attention in robot-assisted therapy, particularly in interaction with children with autism 

spectrum disorders because they require unique capabilities that non-adaptive robots might be unable to 

fulfil (Dautenhahn et al., 2003). Bekele et al. (2011) developed a head tracker that allows a NAO robot to 

adapt its postures, thus encouraging cooperative attention between autistic children and the robot. 

 

Gonsior et al. (2012) conducted a study in which a social robot adapts its own mood to the user’s mood in 

an attempt to increase empathy and helpfulness. The robot adjusts its nonverbal and verbal behaviours 

considering the user’s self-assessments of affect. The results show that the subjects who interacted with 

the adaptive version showed a significantly higher desire to help the robot in further tasks than the 

participants in the control group, who interacted with a version of the robot with emotional behaviour but 

without adaptation capabilities. 

 

Considering the work presented in this section, we hypothesise that empathy and, in particular, the 

consequent user adaptation that empathy facilitates will most likely make social robots more flexible and 

personalised to particular users, in the same way as other types of adaptation have been reported to be 

facilitators of Human-Robot Interaction (Koay et al., 2007; Lee et al., 2012). As stated by Dautenhahn 

(2004), “rather than relying on an inbuilt fixed repertoire of social behaviours, a robot should be able to 

learn and adapt to the social manners, routines and personal preferences of the people it is living with.” 

These behaviours can play an important role in facilitating the interactions between users and social 

robots in several application domains and can ultimately lead to personalisation, which is a feature that is 

frequently mentioned to be relevant in social robots or agents that interact with users for extended periods 

of time (Castellano et al., 2008). 

 

  



 

5. Where to Next? 

 

We are entering an amazing new era for robotics, AI and Affective Computing because concrete 

emotional robots are being developed to a level in which they can be deployed in social settings. As new 

opportunities for affective robots appear, there will be new challenges and research problems. The 

affective computing community must embrace the challenges posed by the advancements in robotic 

platforms. 

 

The community should consider these challenges that will shape the manner in which we build the 

emotional robots of the future: 

 

- Studies and more studies in real settings. The deployment of emotional robots will necessarily indicate 

that tests should be conducted in valid social settings, in which emotional robots are placed in authentic 

situations. Such studies, although informed by Wizard of Oz (WOZ) tests, must be realised with 

autonomous systems as much as possible. This requirement poses a difficult challenge to the community, 

in terms of performance and reliability of the systems and in terms of the validity, believability and 

appropriateness of the emotional models adopted and expressions rendered. 

 

- New bodies for new behaviours and new situations. Innovative new materials and mechanical 

engineering developments will facilitate novel embodiments of robotics. As the new embodiments 

become available to researchers in affective computing, we should combine them with new computational 

models of emotions, new forms of perceiving emotions and new implementations of expressions, and we 

should conduct studies of the outcomes. 

 

- Emotions are dynamic states, also for robots. Emotional robots must be placed in real settings and must 

be capable of interacting with changing environments in a dynamic manner. We should use the dynamic 

features of emotions to create new models and perhaps, more neurobiologically inspired models that 

could provide additional adaptation to the changing environments. 

 

- Emotions are embodied. Although robots have bodies, the majority of the work with emotions in robots 

treats emotions at a cognitive level. If we consider the embodiment aspects of emotional states, we can 

consider the various robotic embodiments associated with different emotions. Relying on human-like 

emotions is not required. With the development of new bodies, novel affective concepts may emerge as a 

synergistic endeavour between psychologists, computer scientists, neuroscientists, roboticists and 

cognitive scientists. Only in a multi-disciplinary way will we be able to design the next theories that will 

lead to the modelling of emotions in robots. 

 

- Can robots be our companions? Companionship, attachment and long-term interaction with robots is 

definitely one of the greatest challenges to our community. This challenge involves new developments in 

learning, adaptation and memory, and extensive additional research is needed in this endeavour. 

 

- Affective symbiosis with robots. The exploration of new types of links between humans and robots can 

be increasingly connected to humans and their physiological and affective states. These links range from 



physiological signals, BMI interfaces, and robotics platforms. Novel types of interdependence between 

robots and humans can be created and explored. 
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